Format

Send to

Choose Destination
Curr Biol. 2018 Sep 24;28(18):R1094-R1095. doi: 10.1016/j.cub.2018.07.066.

Medial prefrontal cortex supports perceptual memory.

Author information

1
Neural Circuits and Cognition Lab, European Neuroscience Institute, 37077 Göttingen, Germany; University Medical Center Goettingen, 37075 Göttingen, Germany; Cognitive Neuroscience Laboratory, German Primate Center, 37077 Göttingen, Germany.
2
NYU Comprehensive Epilepsy Center, Department of Neurology, School of Medicine, New York University, New York, NY 10016, USA.
3
Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA; The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; The Krembil Neuroscience Centre, Toronto M5T 2S8, Canada.
4
Department of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA; The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
5
NYU Comprehensive Epilepsy Center, Department of Neurology, School of Medicine, New York University, New York, NY 10016, USA; Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt am Main, Germany. Electronic address: lucia.melloni@nyumc.org.

Abstract

Our visual environment constantly changes, yet we experience the world as a stable, unified whole. How is this stability achieved? It has been proposed that the brain preserves an implicit perceptual memory in sensory cortices [1] which stabilizes perception towards previously experienced states [2,3]. The role of higher-order areas, especially prefrontal cortex (PFC), in perceptual memory is less explored. Because PFC exhibits long neural time constants, invariance properties, and large receptive fields which may stabilize perception against time-varying inputs, it seems particularly suited to implement perceptual memory [4]. Support for this idea comes from a neuroimaging study reporting that dorsomedial PFC (dmPFC) correlates with perceptual memory [5]. But dmPFC also participates in decision making [6], so its contribution to perceptual memory could arise on a post-perceptual, decisional level [7]. To determine which role, if any, PFC plays in perceptual memory, we obtained direct intracranial recordings in six epilepsy patients while they performed sequential orientation judgements on ambiguous stimuli known to elicit perceptual memory [8]. We found that dmPFC activity in the high gamma frequency band (HGB, 70-150 Hz) correlates with perceptual memory. This effect is anatomically specific to dmPFC and functionally specific for memories of preceding percepts. Further, dmPFC appears to play a causal role, as a patient with a lesion in this area showed impaired perceptual memory. Thus, dmPFC integrates current sensory information with prior percepts, stabilizing visual experience against the perpetual variability of our surroundings.

PMID:
30253147
DOI:
10.1016/j.cub.2018.07.066

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center