Format
Sort by
Items per page

Send to

Choose Destination

Best matches for "PNP" and docking:

Search results

Items: 1 to 20 of 38

1.

Helicobacter pylori purine nucleoside phosphorylase shows new distribution patterns of open and closed active site conformations and unusual biochemical features.

Narczyk M, Bertoša B, Papa L, Vuković V, Leščić Ašler I, Wielgus-Kutrowska B, Bzowska A, Luić M, Štefanić Z.

FEBS J. 2018 Apr;285(7):1305-1325. doi: 10.1111/febs.14403. Epub 2018 Feb 26.

PMID:
29430816
2.

Identification of a novel putative inhibitor of the Plasmodium falciparum purine nucleoside phosphorylase: exploring the purine salvage pathway to design new antimalarial drugs.

Kagami LP, das Neves GM, Rodrigues RP, da Silva VB, Eifler-Lima VL, Kawano DF.

Mol Divers. 2017 Aug;21(3):677-695. doi: 10.1007/s11030-017-9745-8. Epub 2017 May 18.

PMID:
28523625
3.

Molecular cloning, characterization and in silico analysis of a thermostable β-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose.

Kar B, Verma P, Patel GK, Sharma AK.

Phytochemistry. 2017 Aug;140:151-165. doi: 10.1016/j.phytochem.2017.04.021. Epub 2017 May 10.

PMID:
28500928
4.

In-Silico Characterization of a Hypothetical Protein, Rv1288 of Mycobacterium tuberculosis Containing an Esterase Signature and an Uncommon LytE Domain.

Kumar A, Maan P, Singh G, Kaur J.

Curr Comput Aided Drug Des. 2017;13(2):101-111. doi: 10.2174/1573409912666161124144725.

PMID:
27890013
5.

A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor.

Jha RK, Kern TL, Kim Y, Tesar C, Jedrzejczak R, Joachimiak A, Strauss CE.

Nucleic Acids Res. 2016 Sep 30;44(17):8490-500. doi: 10.1093/nar/gkw687. Epub 2016 Aug 17.

6.

Efficient and Regioselective Synthesis of β-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating β-N-Acetylhexosaminidase from Bifidobacterium bifidum.

Chen X, Xu L, Jin L, Sun B, Gu G, Lu L, Xiao M.

Appl Environ Microbiol. 2016 Aug 30;82(18):5642-52. doi: 10.1128/AEM.01325-16. Print 2016 Sep 15.

7.

In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1.

Tikariha H, Pal RR, Qureshi A, Kapley A, Purohit HJ.

Gene. 2016 Oct 15;591(2):382-92. doi: 10.1016/j.gene.2016.06.028. Epub 2016 Jun 16.

PMID:
27317892
8.

Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase.

M NK, V B S C T, G K V, B CS, Guntupalli S, J S B.

Biosci Rep. 2016 Jul 15;36(4). pii: e00358. doi: 10.1042/BSR20160033. Print 2016 Aug.

9.

Functional characterization of hypothetical proteins of Mycobacterium tuberculosis with possible esterase/lipase signature: a cumulative in silico and in vitro approach.

Kumar A, Sharma A, Kaur G, Makkar P, Kaur J.

J Biomol Struct Dyn. 2017 May;35(6):1226-1243. doi: 10.1080/07391102.2016.1174738. Epub 2016 Apr 29.

PMID:
27050490
10.

The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling.

Turek I, Gehring C.

Plant Mol Biol. 2016 Jun;91(3):275-86. doi: 10.1007/s11103-016-0465-8. Epub 2016 Mar 5.

PMID:
26945740
11.

Modulation of the thermostability and substrate specificity of Candida rugosa lipase1 by altering the acyl-binding residue Gly414 at the α-helix-connecting bend.

Zhang X, Zhang Y, Yang G, Xie Y, Xu L, An J, Cui L, Feng Y.

Enzyme Microb Technol. 2016 Jan;82:34-41. doi: 10.1016/j.enzmictec.2015.08.006. Epub 2015 Aug 14.

PMID:
26672446
12.

Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP.

Cacciapuoti G, Bagarolo ML, Martino E, Scafuri B, Marabotti A, Porcelli M.

J Cell Biochem. 2016 May;117(5):1126-35. doi: 10.1002/jcb.25396. Epub 2015 Oct 18.

PMID:
26477689
13.

The crystal structure of JNK from Drosophila melanogaster reveals an evolutionarily conserved topology with that of mammalian JNK proteins.

Chimnaronk S, Sitthiroongruang J, Srisucharitpanit K, Srisaisup M, Ketterman AJ, Boonserm P.

BMC Struct Biol. 2015 Sep 16;15:17. doi: 10.1186/s12900-015-0045-1.

14.

In Silico Approach to Support that p-Nitrophenol Monooxygenase from Arthrobacter sp. Strain JS443 Catalyzes the Initial Two Sequential Monooxygenations.

Kallubai M, Amineni U, Mallavarapu M, Kadiyala V.

Interdiscip Sci. 2015 Jun;7(2):157-67. doi: 10.1007/s12539-015-0018-x. Epub 2015 Aug 14.

PMID:
26272475
15.

Novel α-L-arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer.

Yang Y, Zhang L, Guo M, Sun J, Matsukawa S, Xie J, Wei D.

J Agric Food Chem. 2015 Apr 15;63(14):3725-33. doi: 10.1021/jf5059683. Epub 2015 Apr 1.

PMID:
25797391
16.

Oxidation and nitration of mononitrophenols by a DyP-type peroxidase.

Büttner E, Ullrich R, Strittmatter E, Piontek K, Plattner DA, Hofrichter M, Liers C.

Arch Biochem Biophys. 2015 May 15;574:86-92. doi: 10.1016/j.abb.2015.03.003. Epub 2015 Mar 18.

PMID:
25796533
17.

In silico approach to support that p-nitrophenol monooxygenase from Arthrobacter sp. strain JS443 catalyzes the initial two sequential monooxygenations.

Kallubai M, Amineni U, Mallavarapu M, Kadiyala V.

Interdiscip Sci. 2015 Feb 6. [Epub ahead of print]

PMID:
25663108
18.

Discovery of mono- and disubstituted 1H-pyrazolo[3,4]pyrimidines and 9H-purines as catalytic inhibitors of human DNA topoisomerase IIα.

Pogorelčnik B, Brvar M, Žegura B, Filipič M, Solmajer T, Perdih A.

ChemMedChem. 2015 Feb;10(2):345-59. doi: 10.1002/cmdc.201402459. Epub 2014 Dec 17.

PMID:
25522133
19.

Structure of AMP-PNP-bound BtuCD and mechanism of ATP-powered vitamin B12 transport by BtuCD-F.

Korkhov VM, Mireku SA, Veprintsev DB, Locher KP.

Nat Struct Mol Biol. 2014 Dec;21(12):1097-9. doi: 10.1038/nsmb.2918. Epub 2014 Nov 17.

PMID:
25402482
20.

Determination of substrate specificities against β-glucosidase A (BglA) from Thermotoga maritime: a molecular docking approach.

Rajoka MI, Idrees S, Ashfaq UA, Ehsan B, Haq A.

J Microbiol Biotechnol. 2015 Jan;25(1):44-9.

Supplemental Content

Loading ...
Support Center