Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 72

1.

Biochemical and Structural Basis of Triclosan Resistance in a Novel Enoyl-Acyl Carrier Protein Reductase.

Khan R, Zeb A, Roy N, Thapa Magar R, Kim HJ, Lee KW, Lee SW.

Antimicrob Agents Chemother. 2018 Jun 11. pii: AAC.00648-18. doi: 10.1128/AAC.00648-18. [Epub ahead of print]

PMID:
29891603
2.

Do new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives exhibit antitubercular potential?

Swatko-Ossor M, Klimek K, Belcarz A, Kaczor AA, Pitucha M, Ginalska G.

Eur J Pharm Sci. 2018 May 24;121:155-165. doi: 10.1016/j.ejps.2018.05.024. [Epub ahead of print]

PMID:
29802898
3.

Identification of potent chromone embedded [1,2,3]-triazoles as novel anti-tubercular agents.

Nalla V, Shaikh A, Bapat S, Vyas R, Karthikeyan M, Yogeeswari P, Sriram D, Muthukrishnan M.

R Soc Open Sci. 2018 Apr 4;5(4):171750. doi: 10.1098/rsos.171750. eCollection 2018 Apr.

4.

Identification of some novel pyrazolo[1,5-a]pyrimidine derivatives as InhA inhibitors through pharmacophore-based virtual screening and molecular docking.

Modi P, Patel S, Chhabria MT.

J Biomol Struct Dyn. 2018 May 4:1-14. doi: 10.1080/07391102.2018.1465852. [Epub ahead of print]

PMID:
29663870
5.

Activity-based classification circumvents affinity prediction problems for pyrrolidine carboxamide inhibitors of InhA.

Narkhede Y, Merget B, Wagner S, Sotriffer C.

J Mol Graph Model. 2018 Mar;80:76-84. doi: 10.1016/j.jmgm.2017.12.012. Epub 2017 Dec 24.

PMID:
29328993
6.

A QSAR and molecular modelling study towards new lead finding: polypharmacological approach to Mycobacterium tuberculosis.

Janardhan S, John L, Prasanthi M, Poroikov V, Narahari Sastry G.

SAR QSAR Environ Res. 2017 Oct;28(10):815-832. doi: 10.1080/1062936X.2017.1398782.

PMID:
29183232
7.

Structural insights into the dimer-tetramer transition of FabI from Bacillus anthracis.

Kim HT, Kim S, Na BK, Chung J, Hwang E, Hwang KY.

Biochem Biophys Res Commun. 2017 Nov 4;493(1):28-33. doi: 10.1016/j.bbrc.2017.09.084. Epub 2017 Sep 19.

PMID:
28935372
8.

Elucidating Substrate Promiscuity within the FabI Enzyme Family.

Freund GS, O'Brien TE, Vinson L, Carlin DA, Yao A, Mak WS, Tagkopoulos I, Facciotti MT, Tantillo DJ, Siegel JB.

ACS Chem Biol. 2017 Sep 15;12(9):2465-2473. doi: 10.1021/acschembio.7b00400. Epub 2017 Aug 31.

PMID:
28820936
9.

Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: A combined in-silico and in-vitro analysis.

Lone MY, Athar M, Gupta VK, Jha PC.

J Mol Graph Model. 2017 Sep;76:172-180. doi: 10.1016/j.jmgm.2017.07.005. Epub 2017 Jul 14.

PMID:
28734205
10.

Molecular modeling studies and anti-TB activity of trisubstituted indolizine analogues; molecular docking and dynamic inputs.

Khedr MA, Pillay M, Chandrashekharappa S, Chopra D, Aldhubiab BE, Attimarad M, Alwassil OI, Mlisana K, Odhav B, Venugopala KN.

J Biomol Struct Dyn. 2018 Jun;36(8):2163-2178. doi: 10.1080/07391102.2017.1345325. Epub 2017 Aug 14.

PMID:
28657441
11.

QSAR, docking studies of 1,3-thiazinan-3-yl isonicotinamide derivatives for antitubercular activity.

Chitre TS, Asgaonkar KD, Patil SM, Kumar S, Khedkar VM, Garud DR.

Comput Biol Chem. 2017 Jun;68:211-218. doi: 10.1016/j.compbiolchem.2017.03.015. Epub 2017 Mar 30.

PMID:
28411471
12.

Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis.

Saharan VD, Mahajan SS.

Bioorg Med Chem Lett. 2017 Feb 15;27(4):808-815. doi: 10.1016/j.bmcl.2017.01.026. Epub 2017 Jan 11.

PMID:
28117201
13.

Synthesis, biological evaluation and in silico molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors.

Joshi SD, Dixit SR, Kulkarni VH, Lherbet C, Nadagouda MN, Aminabhavi TM.

Eur J Med Chem. 2017 Jan 27;126:286-297. doi: 10.1016/j.ejmech.2016.11.032. Epub 2016 Nov 17.

PMID:
27889632
14.

Preparation of alginate-chitosan-cyclodextrin micro- and nanoparticles loaded with anti-tuberculosis compounds.

Ivancic A, Macaev F, Aksakal F, Boldescu V, Pogrebnoi S, Duca G.

Beilstein J Nanotechnol. 2016 Aug 24;7:1208-1218. eCollection 2016.

15.

Rational design and synthesis of novel diphenyl ether derivatives as antitubercular agents.

Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG.

Drug Des Devel Ther. 2016 Jul 18;10:2299-310. doi: 10.2147/DDDT.S104037. eCollection 2016.

16.

Evaluation of the inhibitory activity of (aza)isoindolinone-type compounds: toward in vitro InhA action, Mycobacterium tuberculosis growth and mycolic acid biosynthesis.

Chollet A, Stigliani JL, Pasca MR, Mori G, Lherbet C, Constant P, Quémard A, Bernadou J, Pratviel G, Bernardes-Génisson V.

Chem Biol Drug Des. 2016 Nov;88(5):740-755. doi: 10.1111/cbdd.12804. Epub 2016 Jul 16.

PMID:
27301022
17.

Fungal naphtho-γ-pyrones: Potent antibiotics for drug-resistant microbial pathogens.

He Y, Tian J, Chen X, Sun W, Zhu H, Li Q, Lei L, Yao G, Xue Y, Wang J, Li H, Zhang Y.

Sci Rep. 2016 Apr 11;6:24291. doi: 10.1038/srep24291.

18.

Design, Synthesis, and Molecular Docking Studies of a Conjugated Thiadiazole-Thiourea Scaffold as Antituberculosis Agents.

Tatar E, Karakuş S, Küçükgüzel ŞG, Öktem Okullu S, Ünübol N, Kocagöz T, De Clercq E, Andrei G, Snoeck R, Pannecouque C, Kalaycı S, Şahin F, Sriram D, Yogeeswari P, Küçükgüzel İ.

Biol Pharm Bull. 2016;39(4):502-15. doi: 10.1248/bpb.b15-00698.

19.

Study of mechanism of interaction of truncated isoniazid-nicotinamide adenine dinucleotide adduct against multiple enzymes of Mycobacterium tuberculosis by a computational approach.

Jena L, Deshmukh S, Waghmare P, Kumar S, Harinath BC.

Int J Mycobacteriol. 2015 Dec;4(4):276-83. doi: 10.1016/j.ijmyco.2015.06.006. Epub 2015 Jul 15.

20.

Computational approach to understanding the mechanism of action of isoniazid, an anti-TB drug.

Jena L, Waghmare P, Kashikar S, Kumar S, Harinath BC.

Int J Mycobacteriol. 2014 Dec;3(4):276-82. doi: 10.1016/j.ijmyco.2014.08.003. Epub 2014 Sep 2.

Supplemental Content

Loading ...
Support Center