Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 151

1.

Targeting a hidden site on class A beta-lactamases.

Avci FG, Altinisik FE, Karacan I, Senturk Karagoz D, Ersahin S, Eren A, Sayar NA, Vardar Ulu D, Ozkirimli E, Sariyar Akbulut B.

J Mol Graph Model. 2018 Jun 18;84:125-133. doi: 10.1016/j.jmgm.2018.06.007. [Epub ahead of print]

PMID:
29960255
2.

Synergism of Plant Compound With Traditional Antimicrobials Against Streptococcus spp. Isolated From Bovine Mastitis.

Maia NL, de Barros M, de Oliveira LL, Cardoso SA, Dos Santos MH, Pieri FA, Ramalho TC, da Cunha EFF, Moreira MAS.

Front Microbiol. 2018 Jun 6;9:1203. doi: 10.3389/fmicb.2018.01203. eCollection 2018.

3.

Molecular and computational approaches to understand resistance of New Delhi Metallo β- lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems.

Ali A, Gupta D, Srivastava G, Sharma A, Khan AU.

J Biomol Struct Dyn. 2018 May 11:1-40. doi: 10.1080/07391102.2018.1475261. [Epub ahead of print]

PMID:
29749296
4.

Rhodanine as a Potent Scaffold for the Development of Broad-Spectrum Metallo-β-lactamase Inhibitors.

Xiang Y, Chen C, Wang WM, Xu LW, Yang KW, Oelschlaeger P, He Y.

ACS Med Chem Lett. 2018 Mar 22;9(4):359-364. doi: 10.1021/acsmedchemlett.7b00548. eCollection 2018 Apr 12.

PMID:
29670701
5.

An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings.

Maffucci I, Hu X, Fumagalli V, Contini A.

Front Chem. 2018 Mar 5;6:43. doi: 10.3389/fchem.2018.00043. eCollection 2018.

6.

Effect of non-β-lactams on stable variants of inhibitor-resistant TEM β-lactamase in uropathogenic Escherichia coli: implication for alternative therapy.

Mukherjee SK, Mandal RS, Das S, Mukherjee M.

J Appl Microbiol. 2018 Mar;124(3):667-681. doi: 10.1111/jam.13671.

PMID:
29247576
7.

Angular Phenozaxine Ethers as Potent Multi-microbial Targets Inhibitors: Design, Synthesis, and Molecular Docking Studies.

Ezeokonkwo MA, Ogbonna ON, Okafor SN, Godwin-Nwakwasi EU, Ibeanu FN, Okoro UC.

Front Chem. 2017 Nov 28;5:107. doi: 10.3389/fchem.2017.00107. eCollection 2017.

8.

Azolylthioacetamides as a potent scaffold for the development of metallo-β-lactamase inhibitors.

Xiang Y, Chang YN, Ge Y, Kang JS, Zhang YL, Liu XL, Oelschlaeger P, Yang KW.

Bioorg Med Chem Lett. 2017 Dec 1;27(23):5225-5229. doi: 10.1016/j.bmcl.2017.10.038. Epub 2017 Oct 20.

PMID:
29122480
9.

Potential of ionic liquids for inhibiting the growth and β-lactamase production by Bacillus cereus EMB20.

Sadaf A, Kumari A, Khare SK.

Int J Biol Macromol. 2018 Feb;107(Pt B):1915-1921. doi: 10.1016/j.ijbiomac.2017.10.053. Epub 2017 Oct 13.

PMID:
29030198
10.

Spectroscopic analysis and docking simulation on the recognition and binding of TEM-1 β-lactamase with β-lactam antibiotics.

Yang J, Li Q, Bian L.

Exp Ther Med. 2017 Oct;14(4):3288-3298. doi: 10.3892/etm.2017.4853. Epub 2017 Jul 31.

11.

Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii.

Vázquez-Ucha JC, Maneiro M, Martínez-Guitián M, Buynak J, Bethel CR, Bonomo RA, Bou G, Poza M, González-Bello C, Beceiro A.

Antimicrob Agents Chemother. 2017 Oct 24;61(11). pii: e01172-17. doi: 10.1128/AAC.01172-17. Print 2017 Nov.

12.

The role of conserved surface hydrophobic residues in the carbapenemase activity of the class D β-lactamases.

Toth M, Smith CA, Antunes NT, Stewart NK, Maltz L, Vakulenko SB.

Acta Crystallogr D Struct Biol. 2017 Aug 1;73(Pt 8):692-701. doi: 10.1107/S2059798317008671. Epub 2017 Jul 28.

PMID:
28777084
13.
14.

Flavonoids: an overview.

Panche AN, Diwan AD, Chandra SR.

J Nutr Sci. 2016 Dec 29;5:e47. doi: 10.1017/jns.2016.41. eCollection 2016. Review.

15.

Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators.

Hart KM, Moeder KE, Ho CMW, Zimmerman MI, Frederick TE, Bowman GR.

PLoS One. 2017 Jun 1;12(6):e0178678. doi: 10.1371/journal.pone.0178678. eCollection 2017.

16.

Oligopeptides as full-length New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors.

Shen B, Zhu C, Gao X, Liu G, Song J, Yu Y.

PLoS One. 2017 May 23;12(5):e0177293. doi: 10.1371/journal.pone.0177293. eCollection 2017.

17.

Carbamylmethyl Mercaptoacetate Thioether: A Novel Scaffold for the Development of L1 Metallo-β-lactamase Inhibitors.

Chang YN, Xiang Y, Zhang YJ, Wang WM, Chen C, Oelschlaeger P, Yang KW.

ACS Med Chem Lett. 2017 Apr 24;8(5):527-532. doi: 10.1021/acsmedchemlett.7b00058. eCollection 2017 May 11.

18.

Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor.

Wang W, Chen R, Luo Z, Wang W, Chen J.

Nat Prod Res. 2018 Mar;32(5):558-563. doi: 10.1080/14786419.2017.1329732. Epub 2017 May 16.

PMID:
28511613
19.

Antibacterial activity and mechanism of action of the benzazole acrylonitrile-based compounds: In vitro, spectroscopic, and docking studies.

AlNeyadi SS, Salem AA, Ghattas MA, Atatreh N, Abdou IM.

Eur J Med Chem. 2017 Aug 18;136:270-282. doi: 10.1016/j.ejmech.2017.05.010. Epub 2017 May 4.

PMID:
28500995
20.

Diversity-oriented sustainable synthesis of antimicrobial spiropyrrolidine/thiapyrrolizidine oxindole derivatives: New ligands for a metallo-β-lactamase from Klebsiella pneumonia.

Dandia A, Khan S, Soni P, Indora A, Mahawar DK, Pandya P, Chauhan CS.

Bioorg Med Chem Lett. 2017 Jul 1;27(13):2873-2880. doi: 10.1016/j.bmcl.2017.04.083. Epub 2017 Apr 27.

PMID:
28487071

Supplemental Content

Loading ...
Support Center