Format

Send to

Choose Destination
Diabetologia. 2014 Nov;57(11):2366-73. doi: 10.1007/s00125-014-3342-5. Epub 2014 Aug 8.

A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice.

Author information

1
Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA.

Abstract

AIMS/HYPOTHESIS:

The CD40-CD154 interaction directs autoimmune inflammation. Therefore, a long-standing goal in the treatment of autoimmune disease has been to control the formation of that interaction and thereby prevent destructive inflammation. Antibodies blocking CD154 are successful in mouse models of autoimmune disease but, while promising when used in humans, unfortunate thrombotic events have occurred, forcing the termination of those studies.

METHODS:

To address the clinical problem of thrombotic events caused by anti-CD154 antibody treatment, we created a series of small peptides based on the CD154 domain that interacts with CD40 and tested the ability of these peptides to target CD40 and prevent type 1 diabetes in NOD mice.

RESULTS:

We identified a lead candidate, the 15-mer KGYY15 peptide, which specifically targets CD40-positive cells in a size- and sequence-dependent manner. It is highly efficient in preventing hyperglycaemia in NOD mice that spontaneously develop type 1 diabetes. Importantly, KGYY15 can also reverse new-onset hyperglycaemia. KGYY15 is well tolerated and functions to control the cytokine profile of culprit Th40 effector T cells. The KGYY15 peptide is 87% homologous to the human sequence, suggesting that it is an important candidate for translational studies.

CONCLUSIONS/INTERPRETATION:

Peptide KGYY15 constitutes a viable therapeutic option to antibody therapy in targeting the CD40-CD154 interaction in type 1 diabetes. Given the involvement of CD40 in autoimmunity in general, it will also be important to evaluate KGYY15 in the treatment of other autoimmune diseases. This alternative therapeutic approach opens new avenues of exploration in targeting receptor-ligand interactions.

PMID:
25104468
PMCID:
PMC4183717
DOI:
10.1007/s00125-014-3342-5
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central Icon for University of Colorado, Health Sciences Library
Loading ...
Support Center