Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Dose-Related Antihypertensive Properties and the Corresponding Mechanisms of a Chicken Foot Hydrolysate in Hypertensive Rats.

Mas-Capdevila A, Pons Z, Aleixandre A, Bravo FI, Muguerza B.

Nutrients. 2018 Sep 12;10(9). pii: E1295. doi: 10.3390/nu10091295.

2.

Flavanol plasma bioavailability is affected by metabolic syndrome in rats.

Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A.

Food Chem. 2017 Sep 15;231:287-294. doi: 10.1016/j.foodchem.2017.03.141. Epub 2017 Mar 27.

PMID:
28450008
3.

Chronic administration of grape-seed polyphenols attenuates the development of hypertension and improves other cardiometabolic risk factors associated with the metabolic syndrome in cafeteria diet-fed rats.

Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B.

Br J Nutr. 2017 Jan;117(2):200-208. doi: 10.1017/S0007114516004426. Epub 2017 Feb 6.

PMID:
28162106
4.

Rat health status affects bioavailability, target tissue levels, and bioactivity of grape seed flavanols.

Margalef M, Pons Z, Iglesias-Carres L, Quiñones M, Bravo FI, Arola-Arnal A, Muguerza B.

Mol Nutr Food Res. 2017 Feb;61(2). doi: 10.1002/mnfr.201600342. Epub 2016 Nov 3.

PMID:
27624317
5.

Age related differences in the plasma kinetics of flavanols in rats.

Margalef M, Iglesias-Carres L, Pons Z, Bravo FI, Muguerza B, Arola-Arnal A.

J Nutr Biochem. 2016 Mar;29:90-6. doi: 10.1016/j.jnutbio.2015.11.007. Epub 2015 Nov 24.

PMID:
26895669
6.

Gender-related similarities and differences in the body distribution of grape seed flavanols in rats.

Margalef M, Pons Z, Iglesias-Carres L, Arola L, Muguerza B, Arola-Arnal A.

Mol Nutr Food Res. 2016 Apr;60(4):760-72. doi: 10.1002/mnfr.201500717. Epub 2016 Mar 7.

PMID:
26799813
7.

Lack of tissue accumulation of grape seed flavanols after daily long-term administration in healthy and cafeteria-diet obese rats.

Margalef M, Pons Z, Iglesias-Carres L, Bravo FI, Muguerza B, Arola-Arnal A.

J Agric Food Chem. 2015 Nov 18;63(45):9996-10003. doi: 10.1021/acs.jafc.5b03856. Epub 2015 Nov 10.

PMID:
26496863
8.

Tissue distribution of rat flavanol metabolites at different doses.

Margalef M, Pons Z, Bravo FI, Muguerza B, Arola-Arnal A.

J Nutr Biochem. 2015 Oct;26(10):987-95. doi: 10.1016/j.jnutbio.2015.04.006. Epub 2015 May 10.

PMID:
26026838
9.

Acute administration of single oral dose of grape seed polyphenols restores blood pressure in a rat model of metabolic syndrome: role of nitric oxide and prostacyclin.

Pons Z, Margalef M, Bravo FI, Arola-Arnal A, Muguerza B.

Eur J Nutr. 2016 Mar;55(2):749-758. doi: 10.1007/s00394-015-0895-0. Epub 2015 Apr 11.

PMID:
25862540
10.

Regulation of vascular endothelial genes by dietary flavonoids: structure-expression relationship studies and the role of the transcription factor KLF-2.

Martínez-Fernández L, Pons Z, Margalef M, Arola-Arnal A, Muguerza B.

J Nutr Biochem. 2015 Mar;26(3):277-84. doi: 10.1016/j.jnutbio.2014.11.003. Epub 2014 Dec 9.

PMID:
25542418
11.

A dose-response study of the bioavailability of grape seed proanthocyanidin in rat and lipid-lowering effects of generated metabolites in HepG2 cells.

Margalef M, Guerrero L, Pons Z, Bravo FI, Arola L, Muguerza B, Arola-Arnal A.

Food Res Int. 2014 Oct;64:500-507. doi: 10.1016/j.foodres.2014.07.019. Epub 2014 Aug 1.

PMID:
30011680
12.

A rapid method to determine colonic microbial metabolites derived from grape flavanols in rat plasma by liquid chromatography-tandem mass spectrometry.

Margalef M, Pons Z, Muguerza B, Arola-Arnal A.

J Agric Food Chem. 2014 Aug 6;62(31):7698-706. doi: 10.1021/jf5019752. Epub 2014 Jul 28.

PMID:
25069016
13.

Serum metabolites of proanthocyanidin-administered rats decrease lipid synthesis in HepG2 cells.

Guerrero L, Margalef M, Pons Z, Quiñones M, Arola L, Arola-Arnal A, Muguerza B.

J Nutr Biochem. 2013 Dec;24(12):2092-9. doi: 10.1016/j.jnutbio.2013.08.001.

PMID:
24231101

Supplemental Content

Loading ...
Support Center