Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13


Hermite-Hadamard type inequalities for fractional integrals via Green's function.

Adil Khan M, Iqbal A, Suleman M, Chu YM.

J Inequal Appl. 2018;2018(1):161. doi: 10.1186/s13660-018-1751-6. Epub 2018 Jul 4.


Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means.

Xu HZ, Chu YM, Qian WM.

J Inequal Appl. 2018;2018(1):127. doi: 10.1186/s13660-018-1719-6. Epub 2018 May 30.


Optimal bounds for the generalized Euler-Mascheroni constant.

Huang TR, Han BW, Ma XY, Chu YM.

J Inequal Appl. 2018;2018(1):118. doi: 10.1186/s13660-018-1711-1. Epub 2018 May 18.


Ostrowski type inequalities involving conformable fractional integrals.

Adil Khan M, Begum S, Khurshid Y, Chu YM.

J Inequal Appl. 2018;2018(1):70. doi: 10.1186/s13660-018-1664-4. Epub 2018 Apr 3.


Quadratic transformation inequalities for Gaussian hypergeometric function.

Zhao TH, Wang MK, Zhang W, Chu YM.

J Inequal Appl. 2018;2018(1):251. doi: 10.1186/s13660-018-1848-y. Epub 2018 Sep 21.


Monotonicity properties and bounds for the complete p-elliptic integrals.

Huang TR, Tan SY, Ma XY, Chu YM.

J Inequal Appl. 2018;2018(1):239. doi: 10.1186/s13660-018-1828-2. Epub 2018 Sep 12.


Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters.

Qian WM, Chu YM.

J Inequal Appl. 2017;2017(1):274. doi: 10.1186/s13660-017-1550-5. Epub 2017 Nov 2.


On rational bounds for the gamma function.

Yang ZH, Qian WM, Chu YM, Zhang W.

J Inequal Appl. 2017;2017(1):210. doi: 10.1186/s13660-017-1484-y. Epub 2017 Sep 8.


Monotonicity rule for the quotient of two functions and its application.

Yang ZH, Qian WM, Chu YM, Zhang W.

J Inequal Appl. 2017;2017(1):106. doi: 10.1186/s13660-017-1383-2. Epub 2017 May 9.


Inequalities for α-fractional differentiable functions.

Chu YM, Adil Khan M, Ali T, Silvestru Dragomir S.

J Inequal Appl. 2017;2017(1):93. doi: 10.1186/s13660-017-1371-6. Epub 2017 Apr 28.


On approximating the modified Bessel function of the second kind.

Yang ZH, Chu YM.

J Inequal Appl. 2017;2017(1):41. doi: 10.1186/s13660-017-1317-z. Epub 2017 Feb 13.


Optimal inequalities for bounding Toader mean by arithmetic and quadratic means.

Zhao TH, Chu YM, Zhang W.

J Inequal Appl. 2017;2017(1):26. doi: 10.1186/s13660-017-1300-8. Epub 2017 Jan 25.


Parametrized inequality of Hermite-Hadamard type for functions whose third derivative absolute values are quasi-convex.

Wu SH, Sroysang B, Xie JS, Chu YM.

Springerplus. 2015 Dec 30;4:831. doi: 10.1186/s40064-015-1633-z. eCollection 2015.

Supplemental Content

Loading ...
Support Center