Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

In a quest for engineering acidophiles for biomining applications: challenges and opportunities.

Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH.

Genes (Basel). 2018 Feb 21;9(2). pii: E116. doi: 10.3390/genes9020116. Review.

2.

Effect of Binding on Enantioselectivity of Epoxide Hydrolase.

Zaugg J, Gumulya Y, Bodén M, Mark AE, Malde AK.

J Chem Inf Model. 2018 Mar 26;58(3):630-640. doi: 10.1021/acs.jcim.7b00353. Epub 2018 Feb 20.

PMID:
29424533
3.

Learning epistatic interactions from sequence-activity data to predict enantioselectivity.

Zaugg J, Gumulya Y, Malde AK, Bodén M.

J Comput Aided Mol Des. 2017 Dec;31(12):1085-1096. doi: 10.1007/s10822-017-0090-x. Epub 2017 Dec 12.

PMID:
29234997
4.

Genetically programmed chiral organoborane synthesis.

Kan SBJ, Huang X, Gumulya Y, Chen K, Arnold FH.

Nature. 2017 Dec 7;552(7683):132-136. doi: 10.1038/nature24996. Epub 2017 Nov 29.

5.

Determinants of thermostability in the cytochrome P450 fold.

Harris KL, Thomson RES, Strohmaier SJ, Gumulya Y, Gillam EMJ.

Biochim Biophys Acta Proteins Proteom. 2018 Jan;1866(1):97-115. doi: 10.1016/j.bbapap.2017.08.003. Epub 2017 Aug 17. Review.

PMID:
28822812
6.

Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering.

Gumulya Y, Gillam EM.

Biochem J. 2017 Jan 1;474(1):1-19. doi: 10.1042/BCJ20160507. Review.

PMID:
28008088
7.

Computational tools for directed evolution: a comparison of prospective and retrospective strategies.

Zaugg J, Gumulya Y, Gillam EM, Bodén M.

Methods Mol Biol. 2014;1179:315-33. doi: 10.1007/978-1-4939-1053-3_21. Review.

PMID:
25055787
8.

Many pathways in laboratory evolution can lead to improved enzymes: how to escape from local minima.

Gumulya Y, Sanchis J, Reetz MT.

Chembiochem. 2012 May 7;13(7):1060-6. doi: 10.1002/cbic.201100784. Epub 2012 Apr 20.

PMID:
22522601
9.

Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways.

Gumulya Y, Reetz MT.

Chembiochem. 2011 Nov 4;12(16):2502-10. doi: 10.1002/cbic.201100412. Epub 2011 Sep 13.

PMID:
21913300
10.

Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method.

Reetz MT, Soni P, Fernández L, Gumulya Y, Carballeira JD.

Chem Commun (Camb). 2010 Dec 7;46(45):8657-8. doi: 10.1039/c0cc02657c. Epub 2010 Oct 18.

PMID:
20957255
11.

Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods.

Reetz MT, Prasad S, Carballeira JD, Gumulya Y, Bocola M.

J Am Chem Soc. 2010 Jul 7;132(26):9144-52. doi: 10.1021/ja1030479.

PMID:
20536132
12.

Improved PCR method for the creation of saturation mutagenesis libraries in directed evolution: application to difficult-to-amplify templates.

Sanchis J, Fernández L, Carballeira JD, Drone J, Gumulya Y, Höbenreich H, Kahakeaw D, Kille S, Lohmer R, Peyralans JJ, Podtetenieff J, Prasad S, Soni P, Taglieber A, Wu S, Zilly FE, Reetz MT.

Appl Microbiol Biotechnol. 2008 Nov;81(2):387-97. doi: 10.1007/s00253-008-1678-9. Epub 2008 Sep 27.

PMID:
18820909

Supplemental Content

Loading ...
Support Center