Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat.

Zhang J, Liu X, Liang Y, Cao Q, Tian Y, Zhu Y, Cao W, Liu X.

Sensors (Basel). 2019 Mar 5;19(5). pii: E1108. doi: 10.3390/s19051108.

2.

Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.

Lu N, Zhou J, Han Z, Li D, Cao Q, Yao X, Tian Y, Zhu Y, Cao W, Cheng T.

Plant Methods. 2019 Feb 20;15:17. doi: 10.1186/s13007-019-0402-3. eCollection 2019.

3.

Analysis and Evaluation of the Image Preprocessing Process of a Six-Band Multispectral Camera Mounted on an Unmanned Aerial Vehicle for Winter Wheat Monitoring.

Jiang J, Zheng H, Ji X, Cheng T, Tian Y, Zhu Y, Cao W, Ehsani R, Yao X.

Sensors (Basel). 2019 Feb 12;19(3). pii: E747. doi: 10.3390/s19030747.

4.

Potential of UAV-Based Active Sensing for Monitoring Rice Leaf Nitrogen Status.

Li S, Ding X, Kuang Q, Ata-Ui-Karim ST, Cheng T, Liu X, Tian Y, Zhu Y, Cao W, Cao Q.

Front Plant Sci. 2018 Dec 14;9:1834. doi: 10.3389/fpls.2018.01834. eCollection 2018.

5.

Hyperspectral Estimation of Canopy Leaf Biomass Phenotype per Ground Area Using a Continuous Wavelet Analysis in Wheat.

Yao X, Si H, Cheng T, Jia M, Chen Q, Tian Y, Zhu Y, Cao W, Chen C, Cai J, Gao R.

Front Plant Sci. 2018 Sep 25;9:1360. doi: 10.3389/fpls.2018.01360. eCollection 2018.

6.

Wireless Channel Propagation Characteristics and Modeling Research in Rice Field Sensor Networks.

Gao Z, Li W, Zhu Y, Tian Y, Pang F, Cao W, Ni J.

Sensors (Basel). 2018 Sep 15;18(9). pii: E3116. doi: 10.3390/s18093116.

7.

Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis.

Li D, Wang X, Zheng H, Zhou K, Yao X, Tian Y, Zhu Y, Cao W, Cheng T.

Plant Methods. 2018 Aug 29;14:76. doi: 10.1186/s13007-018-0344-1. eCollection 2018.

8.

Combining Unmanned Aerial Vehicle (UAV)-Based Multispectral Imagery and Ground-Based Hyperspectral Data for Plant Nitrogen Concentration Estimation in Rice.

Zheng H, Cheng T, Li D, Yao X, Tian Y, Cao W, Zhu Y.

Front Plant Sci. 2018 Jul 3;9:936. doi: 10.3389/fpls.2018.00936. eCollection 2018.

9.

Assessing the Impact of Spatial Resolution on the Estimation of Leaf Nitrogen Concentration Over the Full Season of Paddy Rice Using Near-Surface Imaging Spectroscopy Data.

Zhou K, Cheng T, Zhu Y, Cao W, Ustin SL, Zheng H, Yao X, Tian Y.

Front Plant Sci. 2018 Jul 5;9:964. doi: 10.3389/fpls.2018.00964. eCollection 2018.

10.

Canopy Chlorophyll Density Based Index for Estimating Nitrogen Status and Predicting Grain Yield in Rice.

Liu X, Zhang K, Zhang Z, Cao Q, Lv Z, Yuan Z, Tian Y, Cao W, Zhu Y.

Front Plant Sci. 2017 Oct 27;8:1829. doi: 10.3389/fpls.2017.01829. eCollection 2017.

11.

Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

Liu X, Ferguson RB, Zheng H, Cao Q, Tian Y, Cao W, Zhu Y.

Sensors (Basel). 2017 Mar 24;17(4). pii: E672. doi: 10.3390/s17040672.

12.

Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data.

Zhou K, Deng X, Yao X, Tian Y, Cao W, Zhu Y, Ustin SL, Cheng T.

Sensors (Basel). 2017 Mar 13;17(3). pii: E578. doi: 10.3390/s17030578.

13.

Comparison of different critical nitrogen dilution curves for nitrogen diagnosis in rice.

Ata-Ul-Karim ST, Zhu Y, Liu X, Cao Q, Tian Y, Cao W.

Sci Rep. 2017 Mar 6;7:42679. doi: 10.1038/srep42679.

14.

A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China.

Zhao B, Ata-Ui-Karim ST, Yao X, Tian Y, Cao W, Zhu Y, Liu X.

PLoS One. 2016 Oct 12;11(10):e0164545. doi: 10.1371/journal.pone.0164545. eCollection 2016.

15.

Optimal Leaf Positions for SPAD Meter Measurement in Rice.

Yuan Z, Cao Q, Zhang K, Ata-Ul-Karim ST, Tian Y, Zhu Y, Cao W, Liu X.

Front Plant Sci. 2016 May 26;7:719. doi: 10.3389/fpls.2016.00719. eCollection 2016.

16.

Exploring novel bands and key index for evaluating leaf equivalent water thickness in wheat using hyperspectra influenced by nitrogen.

Yao X, Jia W, Si H, Guo Z, Tian Y, Liu X, Cao W, Zhu Y.

PLoS One. 2014 Jun 10;9(6):e96352. doi: 10.1371/journal.pone.0096352. eCollection 2014.

17.

Comparison and intercalibration of vegetation indices from different sensors for monitoring above-ground plant nitrogen uptake in winter wheat.

Yao X, Yao X, Jia W, Tian Y, Ni J, Cao W, Zhu Y.

Sensors (Basel). 2013 Mar 5;13(3):3109-30. doi: 10.3390/s130303109.

18.

[Quantitative relationships between leaf area index and canopy reflectance spectra of wheat].

Li Y, Zhu Y, Dai T, Tian Y, Cao W.

Ying Yong Sheng Tai Xue Bao. 2006 Aug;17(8):1443-7. Chinese.

PMID:
17066700
19.

[Relationship between canopy reflectance and plant water status of wheat].

Tian Y, Zhu Y, Cao W, Dai T.

Ying Yong Sheng Tai Xue Bao. 2004 Nov;15(11):2072-6. Chinese.

PMID:
15707315

Supplemental Content

Loading ...
Support Center