Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 90

1.

Cyanobacterial carboxysome mutant analysis reveals the influence of enzyme compartmentalization on cellular metabolism and metabolic network rigidity.

Abernathy MH, Czajka JJ, Allen DK, Hill NC, Cameron JC, Tang YJ.

Metab Eng. 2019 Jul;54:222-231. doi: 10.1016/j.ymben.2019.04.010. Epub 2019 Apr 25.

PMID:
31029860
2.

13C-Fingerprinting and Metabolic Flux Analysis of Bacterial Metabolisms.

Hollinshead W, He L, Tang YJ.

Methods Mol Biol. 2019;1927:215-230. doi: 10.1007/978-1-4939-9142-6_15.

PMID:
30788795
3.

Engineering microbial consortia by division of labor.

Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ.

Microb Cell Fact. 2019 Feb 8;18(1):35. doi: 10.1186/s12934-019-1083-3. Review.

4.

Machine learning framework for assessment of microbial factory performance.

Oyetunde T, Liu D, Martin HG, Tang YJ.

PLoS One. 2019 Jan 15;14(1):e0210558. doi: 10.1371/journal.pone.0210558. eCollection 2019.

5.

Genome-Scale Fluxome of Synechococcus elongatus UTEX 2973 Using Transient 13C-Labeling Data.

Hendry JI, Gopalakrishnan S, Ungerer J, Pakrasi HB, Tang YJ, Maranas CD.

Plant Physiol. 2019 Feb;179(2):761-769. doi: 10.1104/pp.18.01357. Epub 2018 Dec 14.

6.

Bacterial Metabolism During Biofilm Growth Investigated by 13C Tracing.

Wan N, Wang H, Ng CK, Mukherjee M, Ren D, Cao B, Tang YJ.

Front Microbiol. 2018 Nov 20;9:2657. doi: 10.3389/fmicb.2018.02657. eCollection 2018.

7.

Model metabolic strategy for heterotrophic bacteria in the cold ocean based on Colwellia psychrerythraea 34H.

Czajka JJ, Abernathy MH, Benites VT, Baidoo EEK, Deming JW, Tang YJ.

Proc Natl Acad Sci U S A. 2018 Dec 4;115(49):12507-12512. doi: 10.1073/pnas.1807804115. Epub 2018 Nov 16.

8.

Dynamic 13C Labeling of Fast Turnover Metabolites for Analysis of Metabolic Fluxes and Metabolite Channeling.

Abernathy M, Wan N, Shui W, Tang YJ.

Methods Mol Biol. 2019;1859:301-316. doi: 10.1007/978-1-4939-8757-3_18.

PMID:
30421238
9.

Exploiting High-Resolution Mass Spectrometry for Targeted Metabolite Quantification and 13C-Labeling Metabolism Analysis.

Li Z, Li Y, Tang YJ, Shui W.

Methods Mol Biol. 2019;1859:171-184. doi: 10.1007/978-1-4939-8757-3_9.

PMID:
30421229
10.

Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.

Czajka JJ, Nathenson JA, Benites VT, Baidoo EEK, Cheng Q, Wang Y, Tang YJ.

Microb Cell Fact. 2018 Sep 1;17(1):136. doi: 10.1186/s12934-018-0984-x.

11.

Leveraging knowledge engineering and machine learning for microbial bio-manufacturing.

Oyetunde T, Bao FS, Chen JW, Martin HG, Tang YJ.

Biotechnol Adv. 2018 Jul - Aug;36(4):1308-1315. doi: 10.1016/j.biotechadv.2018.04.008. Epub 2018 May 3. Review.

12.

Correction to Integrating MS1 and MS2 Scans in High-Resolution Parallel Reaction Monitoring Assays for Targeted Metabolite Quantification and Dynamic 13C-Labeling Metabolism Analysis.

Li Z, Li Y, Chen W, Cao Q, Guo Y, Wan N, Jiang X, Tang YJ, Wang Q, Shui W.

Anal Chem. 2018 Apr 17;90(8):5509. doi: 10.1021/acs.analchem.8b01316. Epub 2018 Mar 28. No abstract available.

PMID:
29589743
13.

Deciphering cyanobacterial phenotypes for fast photoautotrophic growth via isotopically nonstationary metabolic flux analysis.

Abernathy MH, Yu J, Ma F, Liberton M, Ungerer J, Hollinshead WD, Gopalakrishnan S, He L, Maranas CD, Pakrasi HB, Allen DK, Tang YJ.

Biotechnol Biofuels. 2017 Nov 16;10:273. doi: 10.1186/s13068-017-0958-y. eCollection 2017.

14.

Synthetic biology for manufacturing chemicals: constraints drive the use of non-conventional microbial platforms.

Czajka J, Wang Q, Wang Y, Tang YJ.

Appl Microbiol Biotechnol. 2017 Oct;101(20):7427-7434. doi: 10.1007/s00253-017-8489-9. Epub 2017 Sep 7. Review.

PMID:
28884354
15.

Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas fermentation.

Wan N, Sathish A, You L, Tang YJ, Wen Z.

Sci Rep. 2017 Aug 30;7(1):10090. doi: 10.1038/s41598-017-10312-2.

16.

Channeling in native microbial pathways: Implications and challenges for metabolic engineering.

Abernathy MH, He L, Tang YJ.

Biotechnol Adv. 2017 Nov 1;35(6):805-814. doi: 10.1016/j.biotechadv.2017.06.004. Epub 2017 Jun 13. Review.

PMID:
28627424
17.

Decoupling Resource-Coupled Gene Expression in Living Cells.

Shopera T, He L, Oyetunde T, Tang YJ, Moon TS.

ACS Synth Biol. 2017 Aug 18;6(8):1596-1604. doi: 10.1021/acssynbio.7b00119. Epub 2017 May 4.

PMID:
28459541
18.

Cyanobacterial carbon metabolism: Fluxome plasticity and oxygen dependence.

Wan N, DeLorenzo DM, He L, You L, Immethun CM, Wang G, Baidoo EEK, Hollinshead W, Keasling JD, Moon TS, Tang YJ.

Biotechnol Bioeng. 2017 Jul;114(7):1593-1602. doi: 10.1002/bit.26287. Epub 2017 Mar 30.

PMID:
28295163
19.

Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation.

Liu Z, Oyetunde T, Hollinshead WD, Hermanns A, Tang YJ, Liao W, Liu Y.

Biotechnol Biofuels. 2017 Jan 26;10:22. doi: 10.1186/s13068-017-0708-1. eCollection 2017.

20.

Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions.

He L, Xiu Y, Jones JA, Baidoo EEK, Keasling JD, Tang YJ, Koffas MAG.

Metab Eng. 2017 Jan;39:247-256. doi: 10.1016/j.ymben.2016.12.008. Epub 2016 Dec 23.

PMID:
28017690

Supplemental Content

Loading ...
Support Center