Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 50

1.

Membrane-induced initial structure of α-synuclein control its amyloidogenesis on model membranes.

Terakawa MS, Lee YH, Kinoshita M, Lin Y, Sugiki T, Fukui N, Ikenoue T, Kawata Y, Goto Y.

Biochim Biophys Acta Biomembr. 2018 Mar;1860(3):757-766. doi: 10.1016/j.bbamem.2017.12.011. Epub 2017 Dec 19.

PMID:
29273335
2.

The versatile mutational "repertoire" of Escherichia coli GroEL, a multidomain chaperonin nanomachine.

Mizobata T, Kawata Y.

Biophys Rev. 2018 Apr;10(2):631-640. doi: 10.1007/s12551-017-0332-0. Epub 2017 Nov 27. Review.

3.

Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR.

Iwakawa N, Morimoto D, Walinda E, Kawata Y, Shirakawa M, Sugase K.

Int J Mol Sci. 2017 Oct 28;18(11). pii: E2271. doi: 10.3390/ijms18112271.

4.

Inhibitory effects of local anesthetics on the proteasome and their biological actions.

Bahrudin U, Unno M, Nishio K, Kita A, Li P, Kato M, Inoue M, Tsujitani S, Murakami T, Sugiyama R, Saeki Y, Obara Y, Tanaka K, Yamaguchi H, Sakane I, Kawata Y, Itoh T, Ninomiya H, Hisatome I, Morimoto Y.

Sci Rep. 2017 Jul 11;7(1):5079. doi: 10.1038/s41598-017-04652-2.

5.

High-Sensitivity Rheo-NMR Spectroscopy for Protein Studies.

Morimoto D, Walinda E, Iwakawa N, Nishizawa M, Kawata Y, Yamamoto A, Shirakawa M, Scheler U, Sugase K.

Anal Chem. 2017 Jul 18;89(14):7286-7290. doi: 10.1021/acs.analchem.7b01816. Epub 2017 Jul 5.

6.

Characterization of the novel mutant A78T-HERG from a long QT syndrome type 2 patient: Instability of the mutant protein and stabilization by heat shock factor 1.

Kondo T, Hisatome I, Yoshimura S, Mahati E, Notsu T, Li P, Iitsuka K, Kato M, Ogura K, Miake J, Aiba T, Shimizu W, Kurata Y, Sakata S, Nakasone N, Ninomiya H, Nakai A, Higaki K, Kawata Y, Shirayoshi Y, Yoshida A, Yamamoto K.

J Arrhythm. 2016 Oct;32(5):433-440. Epub 2015 Nov 25.

7.

Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.

Fukui N, Araki K, Hongo K, Mizobata T, Kawata Y.

J Biol Chem. 2016 Nov 25;291(48):25217-25226. Epub 2016 Oct 14.

8.

Common structural features of toxic intermediates from α-synuclein and GroES fibrillogenesis detected using cryogenic coherent X-ray diffraction imaging.

Kameda H, Usugi S, Kobayashi M, Fukui N, Lee S, Hongo K, Mizobata T, Sekiguchi Y, Masaki Y, Kobayashi A, Oroguchi T, Nakasako M, Takayama Y, Yamamoto M, Kawata Y.

J Biochem. 2017 Jan;161(1):55-65. doi: 10.1093/jb/mvw052. Epub 2016 Aug 18.

PMID:
27539923
9.

Suppression of amyloid fibrils using the GroEL apical domain.

Ojha B, Fukui N, Hongo K, Mizobata T, Kawata Y.

Sci Rep. 2016 Aug 4;6:31041. doi: 10.1038/srep31041.

10.

Structural basis of Cu, Zn-superoxide dismutase amyloid fibril formation involves interaction of multiple peptide core regions.

Ida M, Ando M, Adachi M, Tanaka A, Machida K, Hongo K, Mizobata T, Yamakawa MY, Watanabe Y, Nakashima K, Kawata Y.

J Biochem. 2016 Feb;159(2):247-60. doi: 10.1093/jb/mvv091. Epub 2015 Aug 29.

11.

Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer's disease.

Yamakawa MY, Uchino K, Watanabe Y, Adachi T, Nakanishi M, Ichino H, Hongo K, Mizobata T, Kobayashi S, Nakashima K, Kawata Y.

Nutr Neurosci. 2016;19(1):32-42. doi: 10.1179/1476830515Y.0000000042. Epub 2015 Aug 25.

PMID:
26304685
12.

Effects of C-terminal Truncation of Chaperonin GroEL on the Yield of In-cage Folding of the Green Fluorescent Protein.

Ishino S, Kawata Y, Taguchi H, Kajimura N, Matsuzaki K, Hoshino M.

J Biol Chem. 2015 Jun 12;290(24):15042-51. doi: 10.1074/jbc.M114.633636. Epub 2015 Apr 17.

13.

Ultrasonication-dependent formation and degradation of α-synuclein amyloid fibrils.

Yagi H, Mizuno A, So M, Hirano M, Adachi M, Akazawa-Ogawa Y, Hagihara Y, Ikenoue T, Lee YH, Kawata Y, Goto Y.

Biochim Biophys Acta. 2015 Mar;1854(3):209-17. doi: 10.1016/j.bbapap.2014.12.014. Epub 2014 Dec 18.

PMID:
25528988
14.

Cold denaturation of α-synuclein amyloid fibrils.

Ikenoue T, Lee YH, Kardos J, Saiki M, Yagi H, Kawata Y, Goto Y.

Angew Chem Int Ed Engl. 2014 Jul 21;53(30):7799-804. doi: 10.1002/anie.201403815. Epub 2014 Jun 11.

PMID:
24920162
15.

Evaluation of the stability of an SR398/GroES chaperonin complex.

Ishino S, Kawata Y, Ikegami T, Matsuzaki K, Hoshino M.

J Biochem. 2014 May;155(5):295-300. doi: 10.1093/jb/mvu009. Epub 2014 Feb 21.

PMID:
24563543
16.

Bilberry anthocyanins neutralize the cytotoxicity of co-chaperonin GroES fibrillation intermediates.

Iwasa H, Kameda H, Fukui N, Yoshida S, Hongo K, Mizobata T, Kobayashi S, Kawata Y.

Biochemistry. 2013 Dec 23;52(51):9202-11. doi: 10.1021/bi401135j. Epub 2013 Dec 12.

PMID:
24308332
17.

Probing the dynamic process of encapsulation in Escherichia coli GroEL.

Mizuta T, Ando K, Uemura T, Kawata Y, Mizobata T.

PLoS One. 2013 Oct 30;8(10):e78135. doi: 10.1371/journal.pone.0078135. eCollection 2013.

18.

Role of C-terminal negative charges and tyrosine residues in fibril formation of α-synuclein.

Izawa Y, Tateno H, Kameda H, Hirakawa K, Hato K, Yagi H, Hongo K, Mizobata T, Kawata Y.

Brain Behav. 2012 Sep;2(5):595-605. doi: 10.1002/brb3.86. Epub 2012 Aug 10.

19.

Varied effects of Pyrococcus furiosus prefoldin and P. furiosus chaperonin on the refolding reactions of substrate proteins.

Hongo K, Itai H, Mizobata T, Kawata Y.

J Biochem. 2012 Apr;151(4):383-90. doi: 10.1093/jb/mvr141. Epub 2011 Dec 30.

PMID:
22210902
20.

Probing the functional mechanism of Escherichia coli GroEL using circular permutation.

Mizobata T, Uemura T, Isaji K, Hirayama T, Hongo K, Kawata Y.

PLoS One. 2011;6(10):e26462. doi: 10.1371/journal.pone.0026462. Epub 2011 Oct 18.

Supplemental Content

Loading ...
Support Center