Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 49

1.

PLK1/NF-κB feedforward circuit antagonizes the mono-ADP-ribosyltransferase activity of PARP10 and facilitates HCC progression.

Tian L, Yao K, Liu K, Han B, Dong H, Zhao W, Jiang W, Qiu F, Qu L, Wu Z, Zhou B, Zhong M, Zhao J, Qiu X, Zhong L, Guo X, Shi T, Hong X, Lu S.

Oncogene. 2020 Feb 14. doi: 10.1038/s41388-020-1205-8. [Epub ahead of print]

PMID:
32060423
2.

Inhibitory Effect of Condensed Tannins from Banana Pulp on Cholesterol Esterase and Mechanisms of Interaction.

Li X, Jiang H, Pu Y, Cao J, Jiang W.

J Agric Food Chem. 2019 Dec 26;67(51):14066-14073. doi: 10.1021/acs.jafc.9b05212. Epub 2019 Dec 10.

PMID:
31762280
3.

Development of antioxidant chitosan film with banana peels extract and its application as coating in maintaining the storage quality of apple.

Zhang W, Li X, Jiang W.

Int J Biol Macromol. 2019 Nov 12. pii: S0141-8130(19)36811-4. doi: 10.1016/j.ijbiomac.2019.10.275. [Epub ahead of print]

PMID:
31730971
4.

Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method.

Zhang W, Jiang W.

Int J Biol Macromol. 2019 Nov 11. pii: S0141-8130(19)37725-6. doi: 10.1016/j.ijbiomac.2019.11.093. [Epub ahead of print]

PMID:
31726160
5.

Characterization of the direct interaction between apple condensed tannins and cholesterol in vitro.

Zeng X, Du Z, Ding X, Jiang W.

Food Chem. 2020 Mar 30;309:125762. doi: 10.1016/j.foodchem.2019.125762. Epub 2019 Oct 23.

PMID:
31670123
6.

In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid.

Zeng X, Sheng Z, Li X, Fan X, Jiang W.

J Sci Food Agric. 2019 Dec;99(15):6882-6892. doi: 10.1002/jsfa.9974. Epub 2019 Sep 4.

PMID:
31386202
7.

Characterizing the Interactions of Dietary Condensed Tannins with Bile Salts.

Li X, Jiao W, Zhang W, Xu Y, Cao J, Jiang W.

J Agric Food Chem. 2019 Aug 28;67(34):9543-9550. doi: 10.1021/acs.jafc.9b03985. Epub 2019 Aug 15.

PMID:
31379164
8.

Dehydrofreezing of peach: Blanching, D-sodium erythorbate vacuum infiltration, vacuum dehydration, and nitrogen packaging affect the thawed quality of peach.

Fan X, Liu B, Cao J, Jiang W, Guo F, Zhang C, Nie X, Gong H.

J Food Biochem. 2019 Jul;43(7):e12830. doi: 10.1111/jfbc.12830. Epub 2019 Mar 31.

PMID:
31353742
9.

Impact of near freezing temperature storage on postharvest quality and antioxidant capacity of two apricot (Prunus armeniaca L.) cultivars.

Cui K, Zhao H, Sun L, Yang L, Cao J, Jiang W.

J Food Biochem. 2019 Jul;43(7):e12857. doi: 10.1111/jfbc.12857. Epub 2019 Apr 14.

PMID:
31353735
10.

Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature.

Fan X, Jiang W, Gong H, Yang Y, Zhang A, Liu H, Cao J, Guo F, Cui K.

Food Chem. 2019 Dec 1;300:125194. doi: 10.1016/j.foodchem.2019.125194. Epub 2019 Jul 16.

PMID:
31325749
11.

The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit.

Zhang W, Shu C, Chen Q, Cao J, Jiang W.

Food Chem. 2019 Nov 30;299:125109. doi: 10.1016/j.foodchem.2019.125109. Epub 2019 Jul 2.

PMID:
31295635
12.

Characterization of the interactions between banana condensed tannins and biologically important metal ions (Cu2+, Zn2+ and Fe2+).

Zeng X, Du Z, Sheng Z, Jiang W.

Food Res Int. 2019 Sep;123:518-528. doi: 10.1016/j.foodres.2019.04.064. Epub 2019 Apr 30.

PMID:
31285001
13.

Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism.

Zhao H, Jiao W, Cui K, Fan X, Shu C, Zhang W, Cao J, Jiang W.

Food Chem. 2019 Aug 15;289:426-435. doi: 10.1016/j.foodchem.2019.03.088. Epub 2019 Mar 19.

PMID:
30955633
14.

Different molecular weights chitosan coatings delay the senescence of postharvest nectarine fruit in relation to changes of redox state and respiratory pathway metabolism.

Zhang W, Zhao H, Zhang J, Sheng Z, Cao J, Jiang W.

Food Chem. 2019 Aug 15;289:160-168. doi: 10.1016/j.foodchem.2019.03.047. Epub 2019 Mar 12.

PMID:
30955599
15.

Defense Responses, Induced by p-Coumaric Acid and Methyl p-Coumarate, of Jujube ( Ziziphus jujuba Mill.) Fruit against Black Spot Rot Caused by Alternaria alternata.

Yuan S, Li W, Li Q, Wang L, Cao J, Jiang W.

J Agric Food Chem. 2019 Mar 13;67(10):2801-2810. doi: 10.1021/acs.jafc.9b00087. Epub 2019 Feb 27.

PMID:
30794401
16.

Transcriptomic and Metabolic Profiling Reveals 'Green Ring' and 'Red Ring' on Jujube Fruit upon Postharvest Alternaria alternata Infection.

Yuan S, Yan J, Wang M, Ding X, Zhang Y, Li W, Cao J, Jiang W.

Plant Cell Physiol. 2019 Apr 1;60(4):844-861. doi: 10.1093/pcp/pcy252.

PMID:
30605542
17.

Identification of the Al-binding proteins that account for aluminum neurotoxicity and transport in vivo.

Cheng D, Wang X, Xi Y, Cao J, Jiang W.

Toxicol Res (Camb). 2017 Dec 1;7(1):127-135. doi: 10.1039/c7tx00261k. eCollection 2018 Jan 1.

18.

Antifungal Activity of an Abundant Thaumatin-Like Protein from Banana against Penicillium expansum, and Its Possible Mechanisms of Action.

Jiao W, Li X, Zhao H, Cao J, Jiang W.

Molecules. 2018 Jun 14;23(6). pii: E1442. doi: 10.3390/molecules23061442.

19.

Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism.

Li W, Yuan S, Sun J, Li Q, Jiang W, Cao J.

Int J Food Microbiol. 2018 Aug 2;278:26-35. doi: 10.1016/j.ijfoodmicro.2018.04.024. Epub 2018 Apr 19.

PMID:
29702314
20.

Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway.

Jiao W, Li X, Wang X, Cao J, Jiang W.

Food Chem. 2018 Sep 15;260:274-282. doi: 10.1016/j.foodchem.2018.04.010. Epub 2018 Apr 6.

PMID:
29699670

Supplemental Content

Loading ...
Support Center