Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 11

1.

How Electrical Heterogeneity Parameters of Ion-Exchange Membrane Surface Affect the Mass Transfer and Water Splitting Rate in Electrodialysis.

Zyryanova S, Mareev S, Gil V, Korzhova E, Pismenskaya N, Sarapulova V, Rybalkina O, Boyko E, Larchet C, Dammak L, Nikonenko V.

Int J Mol Sci. 2020 Feb 1;21(3). pii: E973. doi: 10.3390/ijms21030973.

2.

Mathematical Modeling of the Effect of Water Splitting on Ion Transfer in the Depleted Diffusion Layer Near an Ion-Exchange Membrane.

Nikonenko V, Urtenov M, Mareev S, Pourcelly G.

Membranes (Basel). 2020 Jan 31;10(2). pii: E22. doi: 10.3390/membranes10020022.

3.

Neutralization Dialysis for Phenylalanine and Mineral Salt Separation. Simple Theory and Experiment.

Kozmai A, Goleva E, Vasil'eva V, Nikonenko V, Pismenskaya N.

Membranes (Basel). 2019 Dec 10;9(12). pii: E171. doi: 10.3390/membranes9120171.

4.

Concentration Dependencies of Diffusion Permeability of Anion-Exchange Membranes in Sodium Hydrogen Carbonate, Monosodium Phosphate, and Potassium Hydrogen Tartrate Solutions.

Pismenskaya N, Sarapulova V, Nevakshenova E, Kononenko N, Fomenko M, Nikonenko V.

Membranes (Basel). 2019 Dec 10;9(12). pii: E170. doi: 10.3390/membranes9120170.

5.

Partial Fluxes of Phosphoric Acid Anions through Anion-Exchange Membranes in the Course of NaH2PO4 Solution Electrodialysis.

Rybalkina O, Tsygurina K, Melnikova E, Mareev S, Moroz I, Nikonenko V, Pismenskaya N.

Int J Mol Sci. 2019 Jul 23;20(14). pii: E3593. doi: 10.3390/ijms20143593.

6.

Transport Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes АМХ and СМХ and to Heterogeneous Membranes MK-40 and MA-41.

Sarapulova V, Shkorkina I, Mareev S, Pismenskaya N, Kononenko N, Larchet C, Dammak L, Nikonenko V.

Membranes (Basel). 2019 Jul 14;9(7). pii: E84. doi: 10.3390/membranes9070084.

7.

1D Mathematical Modelling of Non-Stationary Ion Transfer in the Diffusion Layer Adjacent to an Ion-Exchange Membrane in Galvanostatic Mode.

Uzdenova A, Kovalenko A, Urtenov M, Nikonenko V.

Membranes (Basel). 2018 Sep 19;8(3). pii: E84. doi: 10.3390/membranes8030084.

8.

Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer.

Pismenskaya ND, Nikonenko VV, Melnik NA, Shevtsova KA, Belova EI, Pourcelly G, Cot D, Dammak L, Larchet C.

J Phys Chem B. 2012 Feb 23;116(7):2145-61. doi: 10.1021/jp2101896. Epub 2012 Feb 8.

PMID:
22176351
9.

Intensive current transfer in membrane systems: modelling, mechanisms and application in electrodialysis.

Nikonenko VV, Pismenskaya ND, Belova EI, Sistat P, Huguet P, Pourcelly G, Larchet C.

Adv Colloid Interface Sci. 2010 Oct 15;160(1-2):101-23. doi: 10.1016/j.cis.2010.08.001. Epub 2010 Aug 18. Review.

PMID:
20833381
10.

Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.

Urtenov MA, Kirillova EV, Seidova NM, Nikonenko VV.

J Phys Chem B. 2007 Dec 27;111(51):14208-22. Epub 2007 Dec 4.

PMID:
18052144
11.

Effect of anion-exchange membrane surface properties on mechanisms of overlimiting mass transfer.

Belova EI, Lopatkova GY, Pismenskaya ND, Nikonenko VV, Larchet C, Pourcelly G.

J Phys Chem B. 2006 Jul 13;110(27):13458-69.

PMID:
16821871

Supplemental Content

Loading ...
Support Center