Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 10

1.

Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora.

Tripathi L, Twigg MS, Zompra A, Salek K, Irorere VU, Gutierrez T, Spyroulias GA, Marchant R, Banat IM.

Microb Cell Fact. 2019 Oct 10;18(1):164. doi: 10.1186/s12934-019-1216-8.

2.

Quorum sensing as a potential target for increased production of rhamnolipid biosurfactant in Burkholderia thailandensis E264.

Victor IU, Kwiencien M, Tripathi L, Cobice D, McClean S, Marchant R, Banat IM.

Appl Microbiol Biotechnol. 2019 Aug;103(16):6505-6517. doi: 10.1007/s00253-019-09942-5. Epub 2019 Jun 21.

3.

Marine derived biosurfactants: a vast potential future resource.

Tripathi L, Irorere VU, Marchant R, Banat IM.

Biotechnol Lett. 2018 Dec;40(11-12):1441-1457. doi: 10.1007/s10529-018-2602-8. Epub 2018 Aug 25. Review.

4.

Fatty acid synthesis pathway provides lipid precursors for rhamnolipid biosynthesis in Burkholderia thailandensis E264.

Irorere VU, Smyth TJ, Cobice D, McClean S, Marchant R, Banat IM.

Appl Microbiol Biotechnol. 2018 Jul;102(14):6163-6174. doi: 10.1007/s00253-018-9059-5. Epub 2018 May 12.

5.

Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria.

Irorere VU, Tripathi L, Marchant R, McClean S, Banat IM.

Appl Microbiol Biotechnol. 2017 May;101(10):3941-3951. doi: 10.1007/s00253-017-8262-0. Epub 2017 Apr 6. Review.

6.

Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.

Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I.

Int J Mol Sci. 2016 Jul 19;17(7). pii: E1157. doi: 10.3390/ijms17071157. Review.

7.

Oxidized Polyethylene Wax as a Potential Carbon Source for PHA Production.

Radecka I, Irorere V, Jiang G, Hill D, Williams C, Adamus G, Kwiecień M, Marek AA, Zawadiak J, Johnston B, Kowalczuk M.

Materials (Basel). 2016 May 13;9(5). pii: E367. doi: 10.3390/ma9050367.

8.

Poly-γ-Glutamic Acid: Biodegradable Polymer for Potential Protection of Beneficial Viruses.

Khalil IR, Irorere VU, Radecka I, Burns ATH, Kowalczuk M, Mason JL, Khechara MP.

Materials (Basel). 2016 Jan 6;9(1). pii: E28. doi: 10.3390/ma9010028.

9.

Poly-γ-glutamic acid: production, properties and applications.

Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I.

Microbiology. 2015 Jan;161(Pt 1):1-17. doi: 10.1099/mic.0.081448-0. Epub 2014 Oct 6. Review.

PMID:
25288645
10.

Bacillus subtilis natto: a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria.

Bhat AR, Irorere VU, Bartlett T, Hill D, Kedia G, Morris MR, Charalampopoulos D, Radecka I.

AMB Express. 2013 Jul 5;3(1):36. doi: 10.1186/2191-0855-3-36.

Supplemental Content

Loading ...
Support Center