Send to

Choose Destination
IEEE Trans Cybern. 2017 Nov;47(11):3854-3865. doi: 10.1109/TCYB.2016.2585745. Epub 2016 Jul 18.

Problem Specific MOEA/D for Barrier Coverage with Wireless Sensors.


Barrier coverage with wireless sensors aims at detecting intruders who attempt to cross a specific area, where wireless sensors are distributed remotely at random. This paper considers limited-power sensors with adjustable ranges deployed along a linear domain to form a barrier to detect intruding incidents. We introduce three objectives to minimize: 1) total power consumption while satisfying full coverage; 2) the number of active sensors to improve the reliability; and 3) the active sensor nodes' maximum sensing range to maintain fairness. We refer to the problem as the tradeoff barrier coverage (TBC) problem. With the aim of obtaining a better tradeoff among the three objectives, we present a multiobjective optimization framework based on multiobjective evolutionary algorithm (MOEA)/D, which is called problem specific MOEA/D (PS-MOEA/D). Specifically, we define a 2-tuple encoding scheme and introduce a cover-shrink algorithm to produce feasible and relatively optimal solutions. Subsequently, we incorporate problem-specific knowledge into local search, which allows search procedures for neighboring subproblems collaborate each other. By considering the problem characteristics, we analyze the complexity and incorporate a strategy of computational resource allocation into our algorithm. We validate our approach by comparing with four competitors through several most-used metrics. The experimental results demonstrate that PS-MOEA/D is effective and outperforms the four competitors in all the cases, which indicates that our approach is promising in dealing with TBC.


Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center