Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Monodisperse Polymer Melts Crystallize via Structurally Polydisperse Nanoscale Clusters: Insights from Polyethylene.

Hall KW, Sirk TW, Percec S, Klein ML, Shinoda W.

Polymers (Basel). 2020 Feb 14;12(2). pii: E447. doi: 10.3390/polym12020447.

2.

Divining the shape of nascent polymer crystal nuclei.

Hall KW, Sirk TW, Percec S, Klein ML, Shinoda W.

J Chem Phys. 2019 Oct 14;151(14):144901. doi: 10.1063/1.5123983.

PMID:
31615257
3.

A coarse-grain model for entangled polyethylene melts and polyethylene crystallization.

Hall KW, Sirk TW, Klein ML, Shinoda W.

J Chem Phys. 2019 Jun 28;150(24):244901. doi: 10.1063/1.5092229.

PMID:
31255065
4.

Mechanics and nanovoid nucleation dynamics: effects of polar functionality in glassy polymer networks.

Elder RM, Long TR, Bain ED, Lenhart JL, Sirk TW.

Soft Matter. 2018 Nov 14;14(44):8895-8911. doi: 10.1039/c8sm01483c.

PMID:
30209509
5.

Parameter-free predictions of the viscoelastic response of glassy polymers from non-affine lattice dynamics.

Palyulin VV, Ness C, Milkus R, Elder RM, Sirk TW, Zaccone A.

Soft Matter. 2018 Oct 31;14(42):8475-8482. doi: 10.1039/c8sm01468j.

6.

Influence of molecular weight between crosslinks on the mechanical properties of polymers formed via ring-opening metathesis.

Long TR, Elder RM, Bain ED, Masser KA, Sirk TW, Yu JH, Knorr DB, Lenhart JL.

Soft Matter. 2018 May 2;14(17):3344-3360. doi: 10.1039/c7sm02407j.

PMID:
29658546
7.

Topological structure and mechanics of glassy polymer networks.

Elder RM, Sirk TW.

Soft Matter. 2017 Nov 22;13(45):8392-8401. doi: 10.1039/c7sm01695f.

PMID:
29075705
8.

Nanovoid formation and mechanics: a comparison of poly(dicyclopentadiene) and epoxy networks from molecular dynamics simulations.

Elder RM, Knorr DB, Andzelm JW, Lenhart JL, Sirk TW.

Soft Matter. 2016 May 11;12(19):4418-34. doi: 10.1039/c6sm00691d.

PMID:
27087585
9.

Characteristics of thermal conductivity in classical water models.

Sirk TW, Moore S, Brown EF.

J Chem Phys. 2013 Feb 14;138(6):064505. doi: 10.1063/1.4789961.

PMID:
23425477
10.

Entangled triblock copolymer gel: morphological and mechanical properties.

Chantawansri TL, Sirk TW, Sliozberg YR.

J Chem Phys. 2013 Jan 14;138(2):024908. doi: 10.1063/1.4774373.

PMID:
23320722
11.

Shock Hugoniot calculations of polymers using quantum mechanics and molecular dynamics.

Chantawansri TL, Sirk TW, Byrd EF, Andzelm JW, Rice BM.

J Chem Phys. 2012 Nov 28;137(20):204901. doi: 10.1063/1.4767394.

PMID:
23206025
12.

An enhanced entangled polymer model for dissipative particle dynamics.

Sirk TW, Slizoberg YR, Brennan JK, Lisal M, Andzelm JW.

J Chem Phys. 2012 Apr 7;136(13):134903. doi: 10.1063/1.3698476.

PMID:
22482586
13.

Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities.

Sirk TW, Friedman M, Brown EF.

J Agric Food Chem. 2011 Apr 27;59(8):3780-7. doi: 10.1021/jf2006547. Epub 2011 Mar 25.

PMID:
21417313
14.

Molecular binding of catechins to biomembranes: relationship to biological activity.

Sirk TW, Brown EF, Friedman M, Sum AK.

J Agric Food Chem. 2009 Aug 12;57(15):6720-8. doi: 10.1021/jf900951w.

PMID:
19572638
15.

Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes.

Sirk TW, Brown EF, Sum AK, Friedman M.

J Agric Food Chem. 2008 Sep 10;56(17):7750-8. doi: 10.1021/jf8013298. Epub 2008 Aug 2.

PMID:
18672886

Supplemental Content

Loading ...
Support Center