Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 36

1.

Artificial oxygen carrier improves fatigue resistance in slow muscle but not in fast muscle in a rat in situ model.

Kawaguchi AT, Tamaki T.

Artif Organs. 2020 Jan;44(1):72-80. doi: 10.1111/aor.13535. Epub 2019 Oct 22.

PMID:
31291698
2.

PEGylated carboxyhemoglobin bovine (SANGUINATE) ameliorates myocardial infarction in a rat model.

Kawaguchi AT, Salybekov AA, Yamano M, Kitagishi H, Sekine K, Tamaki T.

Artif Organs. 2018 Dec;42(12):1174-1184. doi: 10.1111/aor.13384.

3.

Regeneration of Transected Recurrent Laryngeal Nerve Using Hybrid-Transplantation of Skeletal Muscle-Derived Stem Cells and Bioabsorbable Scaffold.

Kazuno A, Maki D, Yamato I, Nakajima N, Seta H, Soeda S, Ozawa S, Uchiyama Y, Tamaki T.

J Clin Med. 2018 Sep 12;7(9). pii: E276. doi: 10.3390/jcm7090276.

4.

Voluntary Exercise Positively Affects the Recovery of Long-Nerve Gap Injury Following Tube-Bridging with Human Skeletal Muscle-Derived Stem Cell Transplantation.

Seta H, Maki D, Kazuno A, Yamato I, Nakajima N, Soeda S, Uchiyama Y, Tamaki T.

J Clin Med. 2018 Apr 2;7(4). pii: E67. doi: 10.3390/jcm7040067.

5.

Therapeutic capacities of human and mouse skeletal muscle-derived stem cells for a long gap peripheral nerve injury.

Tamaki T.

Neural Regen Res. 2017 Nov;12(11):1811-1813. doi: 10.4103/1673-5374.219042. No abstract available.

6.

Purified Human Skeletal Muscle-Derived Stem Cells Enhance the Repair and Regeneration in the Damaged Urethra.

Nakajima N, Tamaki T, Hirata M, Soeda S, Nitta M, Hoshi A, Terachi T.

Transplantation. 2017 Oct;101(10):2312-2320. doi: 10.1097/TP.0000000000001613.

PMID:
28027190
7.

A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.

Tamaki T, Hirata M, Nakajima N, Saito K, Hashimoto H, Soeda S, Uchiyama Y, Watanabe M.

PLoS One. 2016 Nov 15;11(11):e0166639. doi: 10.1371/journal.pone.0166639. eCollection 2016.

8.

Reconstitution of the complete rupture in musculotendinous junction using skeletal muscle-derived multipotent stem cell sheet-pellets as a "bio-bond".

Hashimoto H, Tamaki T, Hirata M, Uchiyama Y, Sato M, Mochida J.

PeerJ. 2016 Jul 19;4:e2231. doi: 10.7717/peerj.2231. eCollection 2016.

9.

Reconstruction of Multiple Facial Nerve Branches Using Skeletal Muscle-Derived Multipotent Stem Cell Sheet-Pellet Transplantation.

Saito K, Tamaki T, Hirata M, Hashimoto H, Nakazato K, Nakajima N, Kazuno A, Sakai A, Iida M, Okami K.

PLoS One. 2015 Sep 15;10(9):e0138371. doi: 10.1371/journal.pone.0138371. eCollection 2015.

10.

Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution.

Tamaki T, Uchiyama Y, Hirata M, Hashimoto H, Nakajima N, Saito K, Terachi T, Mochida J.

Front Physiol. 2015 Jun 2;6:165. doi: 10.3389/fphys.2015.00165. eCollection 2015.

11.

Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats.

Tamaki T, Hirata M, Uchiyama Y.

Front Aging Neurosci. 2014 Oct 30;6:296. doi: 10.3389/fnagi.2014.00296. eCollection 2014.

12.

Bridging long gap peripheral nerve injury using skeletal muscle-derived multipotent stem cells.

Tamaki T.

Neural Regen Res. 2014 Jul 15;9(14):1333-6. doi: 10.4103/1673-5374.137582. Review.

13.

Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells.

Tamaki T, Hirata M, Soeda S, Nakajima N, Saito K, Nakazato K, Okada Y, Hashimoto H, Uchiyama Y, Mochida J.

PLoS One. 2014 Mar 10;9(3):e91257. doi: 10.1371/journal.pone.0091257. eCollection 2014.

14.

3D reconstitution of nerve-blood vessel networks using skeletal muscle-derived multipotent stem cell sheet pellets.

Tamaki T, Soeda S, Hashimoto H, Saito K, Sakai A, Nakajima N, Masuda M, Fukunishi N, Uchiyama Y, Terachi T, Mochida J.

Regen Med. 2013 Jul;8(4):437-51. doi: 10.2217/rme.13.30.

PMID:
23826698
15.

Clinical results of a surgical technique using endobuttons for complete tendon tear of pectoralis major muscle: report of five cases.

Uchiyama Y, Miyazaki S, Tamaki T, Shimpuku E, Handa A, Omi H, Mochida J.

Sports Med Arthrosc Rehabil Ther Technol. 2011 Sep 28;3:20. doi: 10.1186/1758-2555-3-20.

16.

Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro.

Tamaki T, Tono K, Uchiyama Y, Okada Y, Masuda M, Soeda S, Nitta M, Akatsuka A.

Cell Tissue Res. 2011 Apr;344(1):147-68. doi: 10.1007/s00441-010-1127-9. Epub 2011 Jan 29.

PMID:
21274567
17.

Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

Nitta M, Tamaki T, Tono K, Okada Y, Masuda M, Akatsuka A, Hoshi A, Usui Y, Terachi T.

Transplantation. 2010 May 15;89(9):1043-9. doi: 10.1097/TP.0b013e3181d45a7f.

PMID:
20150836
18.
19.

Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo.

Tamaki T, Uchiyama Y, Okada Y, Tono K, Masuda M, Nitta M, Hoshi A, Akatsuka A.

Stem Cells Dev. 2010 Apr;19(4):503-12. doi: 10.1089/scd.2009.0179.

PMID:
19634996
20.

Multiple stimulations for muscle-nerve-blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model.

Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A.

Histochem Cell Biol. 2009 Jul;132(1):59-70. doi: 10.1007/s00418-009-0585-1. Epub 2009 Mar 26.

PMID:
19322581

Supplemental Content

Loading ...
Support Center