Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 27


[Investigation of the importance of zinc-signaling: insights from animal model study and human disease].

Takagishi T, Hara T, Fukada T.

Nihon Yakurigaku Zasshi. 2019;154(6):327-334. doi: 10.1254/fpj.154.327. Japanese.


Maintenance of Intestinal Epithelial Homeostasis by Zinc Transporters.

Ohashi W, Hara T, Takagishi T, Hase K, Fukada T.

Dig Dis Sci. 2019 Sep;64(9):2404-2415. doi: 10.1007/s10620-019-05561-2. Epub 2019 Mar 4. Review.


Clostridium perfringens α-toxin impairs granulocyte colony-stimulating factor receptor-mediated granulocyte production while triggering septic shock.

Takehara M, Seike S, Sonobe Y, Bandou H, Yokoyama S, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M.

Commun Biol. 2019 Jan 31;2:45. doi: 10.1038/s42003-019-0280-2. eCollection 2019.


Revisiting the old and learning the new of zinc in immunity.

Fukada T, Hojyo S, Hara T, Takagishi T.

Nat Immunol. 2019 Mar;20(3):248-250. doi: 10.1038/s41590-019-0319-z. No abstract available.


The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin.

Bin BH, Hojyo S, Seo J, Hara T, Takagishi T, Mishima K, Fukada T.

Nutrients. 2018 Feb 16;10(2). pii: E219. doi: 10.3390/nu10020219. Review.


Recent Advances in the Role of SLC39A/ZIP Zinc Transporters In Vivo.

Takagishi T, Hara T, Fukada T.

Int J Mol Sci. 2017 Dec 13;18(12). pii: E2708. doi: 10.3390/ijms18122708. Review.


Requirement of zinc transporter ZIP10 for epidermal development: Implication of the ZIP10-p63 axis in epithelial homeostasis.

Bin BH, Bhin J, Takaishi M, Toyoshima KE, Kawamata S, Ito K, Hara T, Watanabe T, Irié T, Takagishi T, Lee SH, Jung HS, Rho S, Seo J, Choi DH, Hwang D, Koseki H, Ohara O, Sano S, Tsuji T, Mishima K, Fukada T.

Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12243-12248. doi: 10.1073/pnas.1710726114. Epub 2017 Oct 23.


Delta-toxin from Clostridium perfringens perturbs intestinal epithelial barrier function in Caco-2 cell monolayers.

Seike S, Takehara M, Takagishi T, Miyamoto K, Kobayashi K, Nagahama M.

Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):428-433. doi: 10.1016/j.bbamem.2017.10.003. Epub 2017 Oct 5.


Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

Takehara M, Takagishi T, Seike S, Oda M, Sakaguchi Y, Hisatsune J, Ochi S, Kobayashi K, Nagahama M.

Toxins (Basel). 2017 Aug 11;9(8). pii: E247. doi: 10.3390/toxins9080247. Review.


Clostridium perfringens α-toxin impairs erythropoiesis by inhibition of erythroid differentiation.

Takagishi T, Takehara M, Seike S, Miyamoto K, Kobayashi K, Nagahama M.

Sci Rep. 2017 Jul 12;7(1):5217. doi: 10.1038/s41598-017-05567-8.


Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase.

Bin BH, Bhin J, Seo J, Kim SY, Lee E, Park K, Choi DH, Takagishi T, Hara T, Hwang D, Koseki H, Asada Y, Shimoda S, Mishima K, Fukada T.

J Invest Dermatol. 2017 Aug;137(8):1682-1691. doi: 10.1016/j.jid.2017.03.031. Epub 2017 May 22.


Peptidoglycan accelerates granulopoiesis through a TLR2- and MyD88-dependent pathway.

Takehara M, Seike S, Takagishi T, Kobayashi K, Nagahama M.

Biochem Biophys Res Commun. 2017 May 27;487(2):419-425. doi: 10.1016/j.bbrc.2017.04.077. Epub 2017 Apr 15.


Cellular Uptake of Clostridium botulinum C2 Toxin Requires Acid Sphingomyelinase Activity.

Nagahama M, Takehara M, Takagishi T, Seike S, Miyamoto K, Kobayashi K.

Infect Immun. 2017 Mar 23;85(4). pii: e00966-16. doi: 10.1128/IAI.00966-16. Print 2017 Apr.


Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis.

Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T.

J Physiol Sci. 2017 Mar;67(2):283-301. doi: 10.1007/s12576-017-0521-4. Epub 2017 Jan 27. Review.


Clostridium perfringens α-Toxin Impairs Lipid Raft Integrity in Neutrophils.

Takehara M, Takagishi T, Seike S, Oishi K, Fujihara Y, Miyamoto K, Kobayashi K, Nagahama M.

Biol Pharm Bull. 2016;39(10):1694-1700.


Oligomer formation of Clostridium perfringens epsilon-toxin is induced by activation of neutral sphingomyelinase.

Takagishi T, Oda M, Takehara M, Kobayashi K, Nagahama M.

Biochim Biophys Acta. 2016 Nov;1858(11):2681-2688. doi: 10.1016/j.bbamem.2016.07.009. Epub 2016 Jul 22.


Clostridium perfringens α-Toxin Impairs Innate Immunity via Inhibition of Neutrophil Differentiation.

Takehara M, Takagishi T, Seike S, Ohtani K, Kobayashi K, Miyamoto K, Shimizu T, Nagahama M.

Sci Rep. 2016 Jun 16;6:28192. doi: 10.1038/srep28192.


Role of P2X7 receptor in Clostridium perfringens beta-toxin-mediated cellular injury.

Nagahama M, Seike S, Shirai H, Takagishi T, Kobayashi K, Takehara M, Sakurai J.

Biochim Biophys Acta. 2015 Nov;1850(11):2159-67. doi: 10.1016/j.bbagen.2015.08.011. Epub 2015 Aug 20.


Identification of the replication region in pBCNF5603, a bacteriocin-encoding plasmid, in the enterotoxigenic Clostridium perfringens strain F5603.

Miyamoto K, Seike S, Takagishi T, Okui K, Oda M, Takehara M, Nagahama M.

BMC Microbiol. 2015 Jun 9;15:118. doi: 10.1186/s12866-015-0443-3.


Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane.

Takagishi T, Oda M, Kabura M, Kurosawa M, Tominaga K, Urano S, Ueda Y, Kobayashi K, Kobayashi T, Sakurai J, Terao Y, Nagahama M.

PLoS One. 2015 Apr 24;10(4):e0120497. doi: 10.1371/journal.pone.0120497. eCollection 2015.

Supplemental Content

Loading ...
Support Center