Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

High nitrogen contribution by Gunnera magellanica and nitrogen transfer by mycorrhizas drive an extraordinarily fast primary succession in Sub-Antarctic Chile.

Benavent-González A, Raggio J, Villagra J, Blanquer JM, Pintado A, Rozzi R, Green TGA, Sancho LG.

New Phytol. 2019 Apr 5. doi: 10.1111/nph.15838. [Epub ahead of print]

PMID:
30951191
2.

Nematodes in a polar desert reveal the relative role of biotic interactions in the coexistence of soil animals.

Caruso T, Hogg ID, Nielsen UN, Bottos EM, Lee CK, Hopkins DW, Cary SC, Barrett JE, Green TGA, Storey BC, Wall DH, Adams BJ.

Commun Biol. 2019 Feb 15;2:63. doi: 10.1038/s42003-018-0260-y. eCollection 2019.

3.

Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile).

Fernández-Martínez MA, Pointing SB, Pérez-Ortega S, Arróniz-Crespo M, Green TGA, Rozzi R, Sancho LG, de Los Ríos A.

Int Microbiol. 2016 Sep;19(3):161-173. doi: 10.2436/20.1501.01.274.

4.

Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN).

Büdel B, Colesie C, Green TG, Grube M, Lázaro Suau R, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho LG, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L.

Biodivers Conserv. 2014;23:1639-1658. Epub 2014 Mar 2.

5.

Bryophyte-cyanobacteria associations during primary succession in recently Deglaciated areas of Tierra del Fuego (Chile).

Arróniz-Crespo M, Pérez-Ortega S, De Los Ríos A, Green TG, Ochoa-Hueso R, Casermeiro MÁ, de la Cruz MT, Pintado A, Palacios D, Rozzi R, Tysklind N, Sancho LG.

PLoS One. 2014 May 12;9(5):e96081. doi: 10.1371/journal.pone.0096081. eCollection 2014. Erratum in: PLoS One. 2014;9(9):e108759.

6.

Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts.

Colesie C, Green TG, Haferkamp I, Büdel B.

ISME J. 2014 Oct;8(10):2104-15. doi: 10.1038/ismej.2014.47. Epub 2014 Apr 3.

7.

Life form and water source interact to determine active time and environment in cryptogams: an example from the maritime Antarctic.

Schlensog M, Green TG, Schroeter B.

Oecologia. 2013 Sep;173(1):59-72. doi: 10.1007/s00442-013-2608-9. Epub 2013 Feb 27.

PMID:
23440504
8.

Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis.

Henskens FL, Green TG, Wilkins A.

Ann Bot. 2012 Aug;110(3):555-63. doi: 10.1093/aob/mcs108. Epub 2012 May 30.

9.

The advantage of growing on moss: facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens.

Colesie C, Scheu S, Green TG, Weber B, Wirth R, Büdel B.

Oecologia. 2012 Jul;169(3):599-607. doi: 10.1007/s00442-011-2224-5. Epub 2011 Dec 20.

PMID:
22183705
10.

Nocturnal respiration of lichens in their natural habitat is not affected by preceding diurnal net photosynthesis.

Lange OL, Green TG.

Oecologia. 2006 Jun;148(3):396-404. Epub 2006 Mar 3.

PMID:
16514535
11.

Lichens show that fungi can acclimate their respiration to seasonal changes in temperature.

Lange OL, Green TG.

Oecologia. 2005 Jan;142(1):11-9. Epub 2004 Aug 19.

PMID:
15322904
12.

Are lichens active under snow in continental Antarctica?

Pannewitz S, Schlensog M, Green TG, Sancho LG, Schroeter B.

Oecologia. 2003 Mar;135(1):30-8. Epub 2003 Feb 8.

PMID:
12647101
13.

Supplemental Content

Loading ...
Support Center