Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 43

1.

Heme Oxygenase 1 dampens the macrophage sterile inflammasome response and regulates its components in the hypoxic lung.

Vitali SH, Fernandez-Gonzalez A, Nadkarni J, Kwong A, Rose C, Mitsialis SA, Kourembanas S.

Am J Physiol Lung Cell Mol Physiol. 2019 Oct 30. doi: 10.1152/ajplung.00074.2019. [Epub ahead of print]

PMID:
31664855
2.

Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes.

Mansouri N, Willis GR, Fernandez-Gonzalez A, Reis M, Nassiri S, Mitsialis SA, Kourembanas S.

JCI Insight. 2019 Nov 1;4(21). pii: 128060. doi: 10.1172/jci.insight.128060.

3.

Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension.

Hudalla H, Michael Z, Christodoulou N, Willis GR, Fernandez-Gonzalez A, Filatava EJ, Dieffenbach P, Fredenburgh LE, Stearman RS, Geraci MW, Kourembanas S, Christou H.

Am J Respir Cell Mol Biol. 2019 Oct;61(4):512-524. doi: 10.1165/rcmb.2018-0232OC.

PMID:
30951642
4.

Macrophage Immunomodulation: The Gatekeeper for Mesenchymal Stem Cell Derived-Exosomes in Pulmonary Arterial Hypertension?

Willis GR, Fernandez-Gonzalez A, Reis M, Mitsialis SA, Kourembanas S.

Int J Mol Sci. 2018 Aug 27;19(9). pii: E2534. doi: 10.3390/ijms19092534. Review.

5.

PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation.

Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snay E, Meier M, Maegel L, Mitsialis SA, Rog-Zielinska EA, Kourembanas S, Jonigk D, Hansmann G.

Sci Transl Med. 2018 Apr 25;10(438). pii: eaao0303. doi: 10.1126/scitranslmed.aao0303.

PMID:
29695452
6.

Impaired Pulmonary Arterial Vasoconstriction and Nitric Oxide-Mediated Relaxation Underlie Severe Pulmonary Hypertension in the Sugen-Hypoxia Rat Model.

Christou H, Hudalla H, Michael Z, Filatava EJ, Li J, Zhu M, Possomato-Vieira JS, Dias-Junior C, Kourembanas S, Khalil RA.

J Pharmacol Exp Ther. 2018 Feb;364(2):258-274. doi: 10.1124/jpet.117.244798. Epub 2017 Dec 6.

7.

Reply to Muraca et al.: Exosome Treatment of Bronchopulmonary Dysplasia: How Pure Should Your Exosome Preparation Be?

Mitsialis SA, Willis GR, Fernandez-Gonzalez A, Kourembanas S.

Am J Respir Crit Care Med. 2018 Apr 1;197(7):970. doi: 10.1164/rccm.201710-2066LE. No abstract available.

8.

Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency.

Willis GR, Kourembanas S, Mitsialis SA.

Front Cardiovasc Med. 2017 Oct 9;4:63. doi: 10.3389/fcvm.2017.00063. eCollection 2017.

9.

"Good things come in small packages": application of exosome-based therapeutics in neonatal lung injury.

Willis GR, Mitsialis SA, Kourembanas S.

Pediatr Res. 2018 Jan;83(1-2):298-307. doi: 10.1038/pr.2017.256. Epub 2017 Nov 22. Review.

10.

Can We Cure Bronchopulmonary Dysplasia?

Thébaud B, Kourembanas S.

J Pediatr. 2017 Dec;191:12-14. doi: 10.1016/j.jpeds.2017.07.028. Epub 2017 Sep 21. Review. No abstract available.

PMID:
28942897
11.

Mesenchymal Stromal Cell Exosomes Ameliorate Experimental Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage Immunomodulation.

Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis SA, Kourembanas S.

Am J Respir Crit Care Med. 2018 Jan 1;197(1):104-116. doi: 10.1164/rccm.201705-0925OC.

12.

Therapeutic Applications of Extracellular Vesicles: Perspectives from Newborn Medicine.

Willis GR, Kourembanas S, Mitsialis SA.

Methods Mol Biol. 2017;1660:409-432. doi: 10.1007/978-1-4939-7253-1_34. Review.

PMID:
28828676
13.

Stem cell-based therapies for the newborn lung and brain: Possibilities and challenges.

Mitsialis SA, Kourembanas S.

Semin Perinatol. 2016 Apr;40(3):138-51. doi: 10.1053/j.semperi.2015.12.002. Epub 2016 Jan 15. Review.

14.

Systemic Administration of Human Bone Marrow-Derived Mesenchymal Stromal Cell Extracellular Vesicles Ameliorates Aspergillus Hyphal Extract-Induced Allergic Airway Inflammation in Immunocompetent Mice.

Cruz FF, Borg ZD, Goodwin M, Sokocevic D, Wagner DE, Coffey A, Antunes M, Robinson KL, Mitsialis SA, Kourembanas S, Thane K, Hoffman AM, McKenna DH, Rocco PR, Weiss DJ.

Stem Cells Transl Med. 2015 Nov;4(11):1302-16. doi: 10.5966/sctm.2014-0280. Epub 2015 Sep 16.

15.

The Sugen 5416/hypoxia mouse model of pulmonary hypertension revisited: long-term follow-up.

Vitali SH, Hansmann G, Rose C, Fernandez-Gonzalez A, Scheid A, Mitsialis SA, Kourembanas S.

Pulm Circ. 2014 Dec;4(4):619-29. doi: 10.1086/678508.

16.

Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy.

Kourembanas S.

Annu Rev Physiol. 2015;77:13-27. doi: 10.1146/annurev-physiol-021014-071641. Epub 2014 Sep 25. Review.

PMID:
25293529
17.

An Argonaute 2 switch regulates circulating miR-210 to coordinate hypoxic adaptation across cells.

Hale A, Lee C, Annis S, Min PK, Pande R, Creager MA, Julian CG, Moore LG, Mitsialis SA, Hwang SJ, Kourembanas S, Chan SY.

Biochim Biophys Acta. 2014 Nov;1843(11):2528-42. doi: 10.1016/j.bbamcr.2014.06.012. Epub 2014 Jun 28.

18.

Expanding the pool of stem cell therapy for lung growth and repair.

Kourembanas S.

Circulation. 2014 May 27;129(21):2091-3. doi: 10.1161/CIRCULATIONAHA.114.009727. Epub 2014 Apr 7. No abstract available.

19.

Stem cell-based therapy for newborn lung and brain injury: feasible, safe, and the next therapeutic breakthrough?

Kourembanas S.

J Pediatr. 2014 May;164(5):954-6. doi: 10.1016/j.jpeds.2014.01.064. Epub 2014 Mar 12. No abstract available.

PMID:
24630358
20.

MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy.

Sdrimas K, Kourembanas S.

Antioxid Redox Signal. 2014 Nov 1;21(13):1905-15. doi: 10.1089/ars.2013.5784. Epub 2014 Feb 24. Review.

Supplemental Content

Loading ...
Support Center