Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 107

1.

Computational Insight into the Differential Mutagenic Patterns of O-Methylthymine Lesions.

Bhutani P, Nikkel DJ, Wilson KA, Wetmore SD.

Chem Res Toxicol. 2019 Sep 6. doi: 10.1021/acs.chemrestox.9b00291. [Epub ahead of print]

PMID:
31446753
2.
3.

Molecular Dynamics Study of One-Base Deletion Duplexes Containing the Major DNA Adduct Formed by Ochratoxin A: Effects of Sequence Context and Adduct Ionization State on Lesion Site Structure and Mutagenicity.

Kathuria P, Singh P, Sharma P, Manderville RA, Wetmore SD.

J Phys Chem B. 2019 Aug 15;123(32):6980-6989. doi: 10.1021/acs.jpcb.9b06489. Epub 2019 Aug 2.

PMID:
31311268
4.

Stabilization of [WF5 ]+ by Bidentate N-Donor Ligands.

Turnbull D, Wetmore SD, Gerken M.

Angew Chem Int Ed Engl. 2019 Sep 9;58(37):13035-13038. doi: 10.1002/anie.201906600. Epub 2019 Jul 25.

PMID:
31283088
5.

DFT and MD Studies of Formaldehyde-Derived DNA Adducts: Molecular-Level Insights into the Differential Mispairing Potentials of the Adenine, Cytosine, and Guanine Lesions.

Wilson KA, Garden JL, Wetmore NT, Felske LR, Wetmore SD.

J Phys Chem A. 2019 Jul 25;123(29):6229-6240. doi: 10.1021/acs.jpca.9b03899. Epub 2019 Jul 15.

PMID:
31241337
6.

DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro.

Bian K, Lenz SAP, Tang Q, Chen F, Qi R, Jost M, Drennan CL, Essigmann JM, Wetmore SD, Li D.

Nucleic Acids Res. 2019 Jun 20;47(11):5522-5529. doi: 10.1093/nar/gkz395.

7.

Unveiling a Single-Metal-Mediated Phosphodiester Bond Cleavage Mechanism for Nucleic Acids: A Multiscale Computational Investigation of a Human DNA Repair Enzyme.

Aboelnga MM, Wetmore SD.

J Am Chem Soc. 2019 May 29;141(21):8646-8656. doi: 10.1021/jacs.9b03986. Epub 2019 May 14.

PMID:
31046259
8.

Can Cyanuric Acid and 2,4,6-Triaminopyrimidine Containing Ribonucleosides be Components of Prebiotic RNA? Insights from QM Calculations and MD Simulations.

Kaur S, Sharma P, Wetmore SD.

Chemphyschem. 2019 Jun 4;20(11):1425-1436. doi: 10.1002/cphc.201900237. Epub 2019 May 20.

PMID:
30997731
9.

Synthesis, Characterization, and Lewis Acid Behavior of [W(NC6F5)F4] x and Computational Study of W(NR)F4 (R = H, F, CH3, CF3, C6H5, C6F5), W(NC6F5)F4(NCCH3), and W(NC6F5)F4(NC5H5) n ( n = 1, 2).

Turnbull D, Wetmore SD, Gerken M.

Inorg Chem. 2019 May 6;58(9):6363-6375. doi: 10.1021/acs.inorgchem.9b00574. Epub 2019 Apr 16.

PMID:
30990315
10.

Acceptor Influence on Thiolate Sensing by Hemicyanine Dyes.

Chung AJ, Deore PS, Al-Abdul-Wahid S, Aboelnga MM, Wetmore SD, Manderville RA.

J Org Chem. 2019 Feb 15;84(4):2261-2268. doi: 10.1021/acs.joc.9b00066. Epub 2019 Feb 1.

PMID:
30664354
11.

Uncovering a unique approach for damaged DNA replication: A computational investigation of a mutagenic tobacco-derived thymine lesion.

Wilson KA, Holland CD, Wetmore SD.

Nucleic Acids Res. 2019 Feb 28;47(4):1871-1879. doi: 10.1093/nar/gky1265.

12.

Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations.

Lenz SAP, Wetmore SD.

J Comput Aided Mol Des. 2018 Dec;32(12):1375-1388. doi: 10.1007/s10822-018-0178-y. Epub 2018 Nov 26.

PMID:
30478756
13.

Computational insights into the mutagenicity of two tobacco-derived carcinogenic DNA lesions.

Wilson KA, Garden JL, Wetmore NT, Wetmore SD.

Nucleic Acids Res. 2018 Dec 14;46(22):11858-11868. doi: 10.1093/nar/gky1071.

14.
15.

Effect of Size and Shape of Nitrogen-Containing Aromatics on Conformational Preferences of DNA Containing Damaged Guanine.

Kung RW, Sharma P, Wetmore SD.

J Chem Inf Model. 2018 Jul 23;58(7):1415-1425. doi: 10.1021/acs.jcim.8b00238. Epub 2018 Jul 6.

PMID:
29923712
16.

DNA base sequence effects on bulky lesion-induced conformational heterogeneity during DNA replication.

Cai A, Wilson KA, Patnaik S, Wetmore SD, Cho BP.

Nucleic Acids Res. 2018 Jul 6;46(12):6356-6370. doi: 10.1093/nar/gky409.

17.

Manipulation of a DNA aptamer-protein binding site through arylation of internal guanine residues.

Van Riesen AJ, Fadock KL, Deore PS, Desoky A, Manderville RA, Sowlati-Hashjin S, Wetmore SD.

Org Biomol Chem. 2018 May 23;16(20):3831-3840. doi: 10.1039/c8ob00704g.

PMID:
29745412
18.
19.

Quantum Chemical Studies of the Structure and Stability of N-Methylated DNA Nucleobase Dimers: Insights into the Mutagenic Base Pairing of Damaged DNA.

Felske LR, Lenz SAP, Wetmore SD.

J Phys Chem A. 2018 Jan 11;122(1):410-419. doi: 10.1021/acs.jpca.7b10485. Epub 2017 Dec 19.

PMID:
29189004
20.

Conformational Preference and Fluorescence Response of a C-Linked C8-Biphenyl-Guanine Lesion in the NarI Mutational Hotspot: Evidence for Enhanced Syn Adduct Formation.

Berger FD, Sturla SJ, Kung RW, Montina T, Wetmore SD, Manderville RA.

Chem Res Toxicol. 2018 Jan 16;31(1):37-47. doi: 10.1021/acs.chemrestox.7b00266. Epub 2017 Dec 14.

PMID:
29186656

Supplemental Content

Loading ...
Support Center