Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 27

1.

A Deep Learning Framework for Design and Analysis of Surgical Bioprosthetic Heart Valves.

Balu A, Nallagonda S, Xu F, Krishnamurthy A, Hsu MC, Sarkar S.

Sci Rep. 2019 Dec 6;9(1):18560. doi: 10.1038/s41598-019-54707-9.

2.

Machine Learning Approach for Prescriptive Plant Breeding.

Parmley KA, Higgins RH, Ganapathysubramanian B, Sarkar S, Singh AK.

Sci Rep. 2019 Nov 20;9(1):17132. doi: 10.1038/s41598-019-53451-4.

3.

Plant disease identification using explainable 3D deep learning on hyperspectral images.

Nagasubramanian K, Jones S, Singh AK, Sarkar S, Singh A, Ganapathysubramanian B.

Plant Methods. 2019 Aug 21;15:98. doi: 10.1186/s13007-019-0479-8. eCollection 2019.

4.

Aluminum intoxication: A rare cause of myelopathy.

Verma R, Sarkar S.

Neurol India. 2019 May-Jun;67(3):866-869. doi: 10.4103/0028-3886.263248. No abstract available.

5.

Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems.

Nagasubramanian K, Jones S, Sarkar S, Singh AK, Singh A, Ganapathysubramanian B.

Plant Methods. 2018 Oct 3;14:86. doi: 10.1186/s13007-018-0349-9. eCollection 2018.

6.

Linked read technology for assembling large complex and polyploid genomes.

Ott A, Schnable JC, Yeh CT, Wu L, Liu C, Hu HC, Dalgard CL, Sarkar S, Schnable PS.

BMC Genomics. 2018 Sep 4;19(1):651. doi: 10.1186/s12864-018-5040-z.

7.

Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives.

Singh AK, Ganapathysubramanian B, Sarkar S, Singh A.

Trends Plant Sci. 2018 Oct;23(10):883-898. doi: 10.1016/j.tplants.2018.07.004. Epub 2018 Aug 10. Review.

8.

A deep learning framework to discern and count microscopic nematode eggs.

Akintayo A, Tylka GL, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S.

Sci Rep. 2018 Jun 14;8(1):9145. doi: 10.1038/s41598-018-27272-w.

9.

Cortical hyperintensities: A rare magnetic resonance imaging finding in Wilson's disease.

Verma R, Sarkar S, More A.

Neurol India. 2018 May-Jun;66(3):876-878. doi: 10.4103/0028-3886.232325. Review. No abstract available.

10.

An explainable deep machine vision framework for plant stress phenotyping.

Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S.

Proc Natl Acad Sci U S A. 2018 May 1;115(18):4613-4618. doi: 10.1073/pnas.1716999115. Epub 2018 Apr 16.

11.

A deep learning framework for causal shape transformation.

Lore KG, Stoecklein D, Davies M, Ganapathysubramanian B, Sarkar S.

Neural Netw. 2018 Feb;98:305-317. doi: 10.1016/j.neunet.2017.12.003. Epub 2017 Dec 18.

PMID:
29301111
12.

A real-time phenotyping framework using machine learning for plant stress severity rating in soybean.

Naik HS, Zhang J, Lofquist A, Assefa T, Sarkar S, Ackerman D, Singh A, Singh AK, Ganapathysubramanian B.

Plant Methods. 2017 Apr 8;13:23. doi: 10.1186/s13007-017-0173-7. eCollection 2017.

13.

Deep Learning for Flow Sculpting: Insights into Efficient Learning using Scientific Simulation Data.

Stoecklein D, Lore KG, Davies M, Sarkar S, Ganapathysubramanian B.

Sci Rep. 2017 Apr 12;7:46368. doi: 10.1038/srep46368.

14.

Computer vision and machine learning for robust phenotyping in genome-wide studies.

Zhang J, Naik HS, Assefa T, Sarkar S, Reddy RV, Singh A, Ganapathysubramanian B, Singh AK.

Sci Rep. 2017 Mar 8;7:44048. doi: 10.1038/srep44048.

15.

Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

Jubery TZ, Shook J, Parmley K, Zhang J, Naik HS, Higgins R, Sarkar S, Singh A, Singh AK, Ganapathysubramanian B.

Front Plant Sci. 2017 Jan 19;7:2066. doi: 10.3389/fpls.2016.02066. eCollection 2016.

16.

Machine Learning for High-Throughput Stress Phenotyping in Plants.

Singh A, Ganapathysubramanian B, Singh AK, Sarkar S.

Trends Plant Sci. 2016 Feb;21(2):110-124. doi: 10.1016/j.tplants.2015.10.015. Epub 2015 Dec 1. Review.

17.

Direct observation of key photoinduced dynamics in a potential nano-delivery vehicle of cancer drugs.

Sardar S, Chaudhuri S, Kar P, Sarkar S, Lemmens P, Pal SK.

Phys Chem Chem Phys. 2015 Jan 7;17(1):166-77. doi: 10.1039/c4cp03749a.

PMID:
25372615
18.

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin.

Bora T, Lakshman KK, Sarkar S, Makhal A, Sardar S, Pal SK, Dutta J.

Beilstein J Nanotechnol. 2013 Nov 4;4:714-25. doi: 10.3762/bjnano.4.81. eCollection 2013.

19.

Role of central metal ions in hematoporphyrin-functionalized titania in solar energy conversion dynamics.

Sardar S, Sarkar S, Myint MT, Al-Harthi S, Dutta J, Pal SK.

Phys Chem Chem Phys. 2013 Nov 14;15(42):18562-70. doi: 10.1039/c3cp52353e.

PMID:
24076614
20.

UVA radiation induced ultrafast electron transfer from a food carcinogen benzo[a]pyrene to organic molecules, biological macromolecules, and inorganic nano structures.

Banerjee S, Sarkar S, Lakshman K, Dutta J, Pal SK.

J Phys Chem B. 2013 Apr 11;117(14):3726-37. doi: 10.1021/jp312536x. Epub 2013 Mar 27.

PMID:
23484622

Supplemental Content

Loading ...
Support Center