Send to

Choose Destination
Appl Opt. 2018 Feb 10;57(5):992-1004. doi: 10.1364/AO.57.000992.

Light-absorbing aerosol properties retrieved from the sunphotometer observation over the Yangtze River Delta, China.


In this study, aerosol optical depth (AOD) and extinction Ångström exponent (EAE) are derived from ground-based sunphotometer observations between 2007 and 2014 at urban sites of Nanjing over the Yangtze River Delta. In addition, the present study aims to investigate aerosol light-absorbing properties such as single-scattering albedo (SSA), absorption Ångström exponent (AAE), and the aerosol-absorbing optical depth (AAOD). The retrieval of aerosol properties is compared with AERONET inversion products. The results demonstrate that the retrieved AOD has a good agreement with the AERONET Level 1.5 data, with the root mean square error being 0.068, 0.065, and 0.026 for total, fine mode, and coarse mode at 440 nm, respectively. The SSA values indicate similar accuracies in the results, which are about 0.003, -0.009, -0.008, and 0.010 different from AERONET at 440, 670, 870, and 1020 nm, respectively. The occurrence frequency of background level AOD (AOD<0.10) at 440 nm in this region is limited (1%). Monthly mean AOD, SSA, the effective radius (Reff), and the volume concentration at 440 nm were 0.6-1.3, 0.85-0.92, 0.24-0.40 μm, and 0.18-0.28  μm3 μm-2, respectively. The mean value of AAOD at 440 nm (AAOD440) was the highest in both summer (0.095±0.041) and autumn (0.094±0.042), but was the lowest in winter (0.079±0.036). It was also noted that SSA was found to be higher during summer (0.89±0.05). The spectral variation of SSA was observed to be strongly wavelength-dependent during all seasons. The seasonal mean AAE440-870 is the highest in winter (0.86±0.41) and lowest in spring (0.49±0.29). In winter, the cumulative frequency for AAE between 1.0 and 1.2 was about 87%. The peak in the AAE distribution was close to 1.0, indicating that the aerosol column was dominated by urban-industrial aerosols and absorption species other than black carbon. Analysis of the relationship between EAE and SSA showed that the aerosol populations could be classified as "mixed" aerosol, including a mixture of both anthropogenic particles and secondary organic aerosol with highly variable sphericity fraction.


Supplemental Content

Loading ...
Support Center