Format

Send to

Choose Destination
Toxins (Basel). 2019 Oct 16;11(10). pii: E602. doi: 10.3390/toxins11100602.

Calcination Enhances the Aflatoxin and Zearalenone Binding Efficiency of a Tunisian Clay.

Author information

1
Université de Sousse, Institut Supérieur Agronomique de Chott-Mariem, LR18AG01, ISA-CM-BP, 47, Sousse 4042, Tunisia. Roua.Rejeb@UGent.be.
2
Department of Pathology, Bacteriology and Avian Diseases, Faculty of veterinary medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Roua.Rejeb@UGent.be.
3
Department of Pathology, Bacteriology and Avian Diseases, Faculty of veterinary medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Gunther.Antonissen@UGent.be.
4
Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Gunther.Antonissen@UGent.be.
5
Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium. Marthe.DeBoevre@UGent.be.
6
Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium. Christel.Detavernier@UGent.be.
7
Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium. Mario.VandeVelde@UGent.be.
8
Department of Bioanalysis, Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
9
Department of Pathology, Bacteriology and Avian Diseases, Faculty of veterinary medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium. Richard.Ducatelle@UGent.be.
10
Université de Sousse, Institut Supérieur Agronomique de Chott-Mariem, LR18AG01, ISA-CM-BP, 47, Sousse 4042, Tunisia. mediha.ayed@yahoo.fr.
11
Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Avenue Omar Ibn El Khattab, Gabes 6029, Tunisia. achraf.ghorbal.issat@gmail.com.

Abstract

Clays are known to have promising adsorbing characteristics, and are used as feed additives to overcome the negative effects of mycotoxicosis in livestock farming. Modification of clay minerals by heat treatment, also called calcination, can alter their adsorption characteristics. Little information, however, is available on the effect of calcination with respect to mycotoxin binding. The purpose of this study was to characterize a Tunisian clay before and after calcination (at 550 °C), and to investigate the effectiveness of the thermal treatment of this clay on its aflatoxin B1 (AFB1), G1 (AFG1), B2 (AFB2), G2 (AFG2), and zearalenone (ZEN) adsorption capacity. Firstly, the purified clay (CP) and calcined clay (CC) were characterized with X-ray Fluorescence (XRF), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR-IR), cation exchange capacity (CEC), specific surface area (SBET), and point of zero charge (pHPZC) measurements. Secondly, an in vitro model that simulated the pH conditions of the monogastric gastrointestinal tract was used to evaluate the binding efficiency of the tested clays when artificially mixed with aflatoxins and zearalenone. The tested clay consisted mainly of smectite and illite. Purified and calcined clay had similar chemical compositions. After heat treatment, however, some changes in the mineralogical and textural properties were observed. The calcination decreased the cation exchange capacity and the specific surface, whereas the pore size was increased. Both purified and calcined clay had a binding efficacy of over 90% for AFB1 under simulated poultry GI tract conditions. Heat treatment of the clay increased the adsorption of AFB2, AFG1, and AFG2 related to the increase in pore size of the clay by the calcination process. ZEN adsorption also increased by calcination, albeit to a more stable level at pH 3 rather than at pH 7. In conclusion, calcination of clay minerals enhanced the adsorption of aflatoxins and mostly of AFG1 and AFG2 at neutral pH of the gastrointestinal tract, and thus are associated with protection against the toxic effects of aflatoxins.

KEYWORDS:

adsorption; aflatoxins; calcined; clay; pH; purified; zearalenone

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center