Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 111

1.

Cellobiose dehydrogenase: Bioelectrochemical insights and applications.

Scheiblbrandner S, Ludwig R.

Bioelectrochemistry. 2019 Aug 3;131:107345. doi: 10.1016/j.bioelechem.2019.107345. [Epub ahead of print] Review.

PMID:
31494387
2.

Direct Electron Transfer of Enzymes Facilitated by Cytochromes.

Ma S, Ludwig R.

ChemElectroChem. 2019 Feb 15;6(4):958-975. doi: 10.1002/celc.201801256. Epub 2018 Dec 13. Review.

3.

Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase.

Laurent CVFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C.

Biochemistry. 2019 Mar 5;58(9):1226-1235. doi: 10.1021/acs.biochem.8b01178. Epub 2019 Feb 15.

4.

Multipoint Precision Binding of Substrate Protects Lytic Polysaccharide Monooxygenases from Self-Destructive Off-Pathway Processes.

Loose JSM, Arntzen MØ, Bissaro B, Ludwig R, Eijsink VGH, Vaaje-Kolstad G.

Biochemistry. 2018 Jul 17;57(28):4114-4124. doi: 10.1021/acs.biochem.8b00484. Epub 2018 Jun 29.

PMID:
29901989
5.

A fast and sensitive activity assay for lytic polysaccharide monooxygenase.

Breslmayr E, Hanžek M, Hanrahan A, Leitner C, Kittl R, Šantek B, Oostenbrink C, Ludwig R.

Biotechnol Biofuels. 2018 Mar 23;11:79. doi: 10.1186/s13068-018-1063-6. eCollection 2018.

6.

Complex Coacervation of Milk Proteins with Sodium Alginate.

Ghorbani Gorji E, Waheed A, Ludwig R, Toca-Herrera JL, Schleining G, Ghorbani Gorji S.

J Agric Food Chem. 2018 Mar 28;66(12):3210-3220. doi: 10.1021/acs.jafc.7b03915. Epub 2018 Mar 14.

PMID:
29489360
7.

Multiplicity of enzymatic functions in the CAZy AA3 family.

Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D.

Appl Microbiol Biotechnol. 2018 Mar;102(6):2477-2492. doi: 10.1007/s00253-018-8784-0. Epub 2018 Feb 6. Review.

8.

Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability.

Kracher D, Andlar M, Furtmüller PG, Ludwig R.

J Biol Chem. 2018 Feb 2;293(5):1676-1687. doi: 10.1074/jbc.RA117.000109. Epub 2017 Dec 19.

9.

Cellobiose dehydrogenase hosted in lipidic cubic phase to improve catalytic activity and stability.

Grippo V, Ma S, Ludwig R, Gorton L, Bilewicz R.

Bioelectrochemistry. 2019 Feb;125:134-141. doi: 10.1016/j.bioelechem.2017.10.003. Epub 2017 Oct 13.

PMID:
29128298
10.

Evolving stability and pH-dependent activity of the high redox potential Botrytis aclada laccase for enzymatic fuel cells.

Scheiblbrandner S, Breslmayr E, Csarman F, Paukner R, Führer J, Herzog PL, Shleev SV, Osipov EM, Tikhonova TV, Popov VO, Haltrich D, Ludwig R, Kittl R.

Sci Rep. 2017 Oct 20;7(1):13688. doi: 10.1038/s41598-017-13734-0.

11.

Rechargeable, flexible and mediator-free biosupercapacitor based on transparent ITO nanoparticle modified electrodes acting in µM glucose containing buffers.

Bobrowski T, González Arribas E, Ludwig R, Toscano MD, Shleev S, Schuhmann W.

Biosens Bioelectron. 2018 Mar 15;101:84-89. doi: 10.1016/j.bios.2017.10.016. Epub 2017 Oct 11.

PMID:
29049946
13.

An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device.

Xiao X, Conghaile PÓ, Leech D, Ludwig R, Magner E.

Biosens Bioelectron. 2017 Dec 15;98:421-427. doi: 10.1016/j.bios.2017.07.023. Epub 2017 Jul 11.

PMID:
28711029
14.

Oxidoreductases on their way to industrial biotransformations.

Martínez AT, Ruiz-Dueñas FJ, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar OM, Hofrichter M, Liers C, Ullrich R, Scheibner K, Sannia G, Piscitelli A, Pezzella C, Sener ME, Kılıç S, van Berkel WJH, Guallar V, Lucas MF, Zuhse R, Ludwig R, Hollmann F, Fernández-Fueyo E, Record E, Faulds CB, Tortajada M, Winckelmann I, Rasmussen JA, Gelo-Pujic M, Gutiérrez A, Del Río JC, Rencoret J, Alcalde M.

Biotechnol Adv. 2017 Nov 1;35(6):815-831. doi: 10.1016/j.biotechadv.2017.06.003. Epub 2017 Jun 15. Review.

15.

Transparent, mediator- and membrane-free enzymatic fuel cell based on nanostructured chemically modified indium tin oxide electrodes.

González-Arribas E, Bobrowski T, Di Bari C, Sliozberg K, Ludwig R, Toscano MD, De Lacey AL, Pita M, Schuhmann W, Shleev S.

Biosens Bioelectron. 2017 Nov 15;97:46-52. doi: 10.1016/j.bios.2017.05.040. Epub 2017 May 23.

PMID:
28554045
16.

A Dual-Enzyme Hydrogen Peroxide Generation Machinery in Hydrogels Supports Antimicrobial Wound Treatment.

Huber D, Tegl G, Mensah A, Beer B, Baumann M, Borth N, Sygmund C, Ludwig R, Guebitz GM.

ACS Appl Mater Interfaces. 2017 May 10;9(18):15307-15316. doi: 10.1021/acsami.7b03296. Epub 2017 Apr 25.

PMID:
28429928
17.

Molecular and catalytic properties of fungal extracellular cellobiose dehydrogenase produced in prokaryotic and eukaryotic expression systems.

Ma S, Preims M, Piumi F, Kappel L, Seiboth B, Record E, Kracher D, Ludwig R.

Microb Cell Fact. 2017 Feb 28;16(1):37. doi: 10.1186/s12934-017-0653-5.

18.

Characterization of three pyranose dehydrogenase isoforms from the litter-decomposing basidiomycete Leucoagaricus meleagris (syn. Agaricus meleagris).

Graf MM, Weber S, Kracher D, Kittl R, Sygmund C, Ludwig R, Peterbauer C, Haltrich D.

Appl Microbiol Biotechnol. 2017 Apr;101(7):2879-2891. doi: 10.1007/s00253-016-8051-1. Epub 2016 Dec 19.

19.

A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.

Xiao X, Conghaile PÓ, Leech D, Ludwig R, Magner E.

Biosens Bioelectron. 2017 Apr 15;90:96-102. doi: 10.1016/j.bios.2016.11.012. Epub 2016 Nov 9.

PMID:
27886606
20.

Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

Kadek A, Kavan D, Marcoux J, Stojko J, Felice AK, Cianférani S, Ludwig R, Halada P, Man P.

Biochim Biophys Acta Gen Subj. 2017 Feb;1861(2):157-167. doi: 10.1016/j.bbagen.2016.11.016. Epub 2016 Nov 13.

PMID:
27851982

Supplemental Content

Loading ...
Support Center