Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 27

1.

Increased DHA Production in Seed Oil Using a Selective Lysophosphatidic Acid Acyltransferase.

Shrestha P, Hussain D, Mulder RJ, Taylor MC, Singh SP, Petrie JR, Zhou XR.

Front Plant Sci. 2018 Aug 22;9:1234. doi: 10.3389/fpls.2018.01234. eCollection 2018.

2.

Liquid chromatography-mass spectrometry based approach for rapid comparison of lysophosphatidic acid acyltransferase activity on multiple substrates.

Hou T, Taylor MC, Shrestha P, Singh S, Zhang ZJ, Zhou XR.

J Chromatogr A. 2018 Oct 19;1572:100-105. doi: 10.1016/j.chroma.2018.08.054. Epub 2018 Aug 29.

PMID:
30180990
3.

Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor.

Vanhercke T, Belide S, Taylor MC, El Tahchy A, Okada S, Rolland V, Liu Q, Mitchell M, Shrestha P, Venables I, Ma L, Blundell C, Mathew A, Ziolkowski L, Niesner N, Hussain D, Dong B, Liu G, Godwin ID, Lee J, Rug M, Zhou XR, Singh SP, Petrie JR.

Plant Biotechnol J. 2019 Jan;17(1):220-232. doi: 10.1111/pbi.12959. Epub 2018 Jul 13.

4.

Comparative Lipidomics and Proteomics of Lipid Droplets in the Mesocarp and Seed Tissues of Chinese Tallow (Triadica sebifera).

Zhi Y, Taylor MC, Campbell PM, Warden AC, Shrestha P, El Tahchy A, Rolland V, Vanhercke T, Petrie JR, White RG, Chen W, Singh SP, Liu Q.

Front Plant Sci. 2017 Aug 2;8:1339. doi: 10.3389/fpls.2017.01339. eCollection 2017.

5.

Step changes in leaf oil accumulation via iterative metabolic engineering.

Vanhercke T, Divi UK, El Tahchy A, Liu Q, Mitchell M, Taylor MC, Eastmond PJ, Bryant F, Mechanicos A, Blundell C, Zhi Y, Belide S, Shrestha P, Zhou XR, Ral JP, White RG, Green A, Singh SP, Petrie JR.

Metab Eng. 2017 Jan;39:237-246. doi: 10.1016/j.ymben.2016.12.007. Epub 2016 Dec 18.

6.
7.

Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII).

Liu Q, Wu M, Zhang B, Shrestha P, Petrie J, Green AG, Singh SP.

Plant Biotechnol J. 2017 Jan;15(1):132-143. doi: 10.1111/pbi.12598. Epub 2016 Sep 7.

8.

Genetic enhancement of oil content in potato tuber (Solanum tuberosum L.) through an integrated metabolic engineering strategy.

Liu Q, Guo Q, Akbar S, Zhi Y, El Tahchy A, Mitchell M, Li Z, Shrestha P, Vanhercke T, Ral JP, Liang G, Wang MB, White R, Larkin P, Singh S, Petrie J.

Plant Biotechnol J. 2017 Jan;15(1):56-67. doi: 10.1111/pbi.12590. Epub 2016 Jul 11.

9.

Expression of Mouse MGAT in Arabidopsis Results in Increased Lipid Accumulation in Seeds.

El Tahchy A, Petrie JR, Shrestha P, Vanhercke T, Singh SP.

Front Plant Sci. 2015 Dec 22;6:1180. doi: 10.3389/fpls.2015.01180. eCollection 2015.

10.

Stable expression of silencing-suppressor protein enhances the performance and longevity of an engineered metabolic pathway.

Naim F, Shrestha P, Singh SP, Waterhouse PM, Wood CC.

Plant Biotechnol J. 2016 Jun;14(6):1418-26. doi: 10.1111/pbi.12506. Epub 2015 Dec 2.

11.

A case study on the genetic origin of the high oleic acid trait through FAD2-1 DNA sequence variation in safflower (Carthamus tinctorius L.).

Rapson S, Wu M, Okada S, Das A, Shrestha P, Zhou XR, Wood C, Green A, Singh S, Liu Q.

Front Plant Sci. 2015 Sep 9;6:691. doi: 10.3389/fpls.2015.00691. eCollection 2015.

12.

Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA.

Zhou XR, Callahan DL, Shrestha P, Liu Q, Petrie JR, Singh SP.

Front Plant Sci. 2014 Sep 1;5:419. doi: 10.3389/fpls.2014.00419. eCollection 2014.

13.

Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.

Mansour MP, Shrestha P, Belide S, Petrie JR, Nichols PD, Singh SP.

Nutrients. 2014 Feb 21;6(2):776-89. doi: 10.3390/nu6020776.

14.

Metabolic engineering Camelina sativa with fish oil-like levels of DHA.

Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G, Liu Q, Divi UK, Mulder RJ, Mansour MP, Nichols PD, Singh SP.

PLoS One. 2014 Jan 21;9(1):e85061. doi: 10.1371/journal.pone.0085061. eCollection 2014. Erratum in: PLoS One. 2014;9(4):e95409.

15.

Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR.

Plant Biotechnol J. 2014 Feb;12(2):231-9. doi: 10.1111/pbi.12131. Epub 2013 Oct 24.

16.

AtDGAT2 is a functional acyl-CoA:diacylglycerol acyltransferase and displays different acyl-CoA substrate preferences than AtDGAT1.

Zhou XR, Shrestha P, Yin F, Petrie JR, Singh SP.

FEBS Lett. 2013 Aug 2;587(15):2371-6. doi: 10.1016/j.febslet.2013.06.003. Epub 2013 Jun 13.

17.

Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants.

Vanhercke T, El Tahchy A, Shrestha P, Zhou XR, Singh SP, Petrie JR.

FEBS Lett. 2013 Feb 14;587(4):364-9. doi: 10.1016/j.febslet.2012.12.018. Epub 2013 Jan 8.

18.

Metabolic engineering plant seeds with fish oil-like levels of DHA.

Petrie JR, Shrestha P, Zhou XR, Mansour MP, Liu Q, Belide S, Nichols PD, Singh SP.

PLoS One. 2012;7(11):e49165. doi: 10.1371/journal.pone.0049165. Epub 2012 Nov 7.

19.

Modification of Seed Oil Composition in Arabidopsis by Artificial microRNA-Mediated Gene Silencing.

Belide S, Petrie JR, Shrestha P, Singh SP.

Front Plant Sci. 2012 Jul 31;3:168. doi: 10.3389/fpls.2012.00168. eCollection 2012.

20.

Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway.

Petrie JR, Vanhercke T, Shrestha P, El Tahchy A, White A, Zhou XR, Liu Q, Mansour MP, Nichols PD, Singh SP.

PLoS One. 2012;7(4):e35214. doi: 10.1371/journal.pone.0035214. Epub 2012 Apr 16. Erratum in: PLoS One. 2012;7(7): doi/10.1371/annotation/f0547e8e-5cec-4ae4-8348-07f5aa3b8f34.

Supplemental Content

Loading ...
Support Center