Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 14

1.

Fiber-optic Fabry-Perot pressure sensor based on sapphire direct bonding for high-temperature applications.

Li W, Liang T, Jia P, Lei C, Hong Y, Li Y, Yao Z, Liu W, Xiong J.

Appl Opt. 2019 Mar 1;58(7):1662-1666. doi: 10.1364/AO.58.001662.

PMID:
30874197
2.

Correction: Yan, L., et al. A Micro Bubble Structure Based Fabry⁻Perot Optical Fiber Strain Sensor with High Sensitivity and Low-Cost Characteristics Sensors, 2017, 17, 555.

Yan L, Gui Z, Wang G, An Y, Gu J, Zhang M, Liu X, Wang Z, Wang G, Jia P.

Sensors (Basel). 2018 Sep 14;18(9). pii: E3102. doi: 10.3390/s18093102.

3.

Batch-producible MEMS fiber-optic Fabry-Perot pressure sensor for high-temperature application.

Jia P, Liang H, Fang G, Qian J, Feng F, Liang T, Xiong J.

Appl Opt. 2018 Aug 10;57(23):6687-6692. doi: 10.1364/AO.57.006687.

PMID:
30129613
4.

Fiber-optic Fabry-Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications.

Liu J, Jia P, Zhang H, Tian X, Liang H, Hong Y, Liang T, Liu W, Xiong J.

Appl Opt. 2018 May 20;57(15):4211-4215. doi: 10.1364/AO.57.004211.

PMID:
29791395
5.

Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application.

Liang H, Jia P, Liu J, Fang G, Li Z, Hong Y, Liang T, Xiong J.

Sensors (Basel). 2018 Mar 28;18(4). pii: E1011. doi: 10.3390/s18041011.

6.

Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application.

Li Z, Jia P, Fang G, Liang H, Liang T, Liu W, Xiong J.

Appl Opt. 2018 Mar 10;57(8):1738-1743. doi: 10.1364/AO.57.001738.

PMID:
29521953
7.

Interface Characteristics of Sapphire Direct Bonding for High-Temperature Applications.

Li W, Liang T, Chen Y, Jia P, Xiong J, Hong Y, Lei C, Yao Z, Qi L, Liu W.

Sensors (Basel). 2017 Sep 11;17(9). pii: E2080. doi: 10.3390/s17092080.

8.

A Micro Bubble Structure Based Fabry-Perot Optical Fiber Strain Sensor with High Sensitivity and Low-Cost Characteristics.

Yan L, Gui Z, Wang G, An Y, Gu J, Zhang M, Liu X, Wang Z, Wang G, Jia P.

Sensors (Basel). 2017 Mar 9;17(3). pii: E555. doi: 10.3390/s17030555. Erratum in: Sensors (Basel). 2018 Sep 14;18(9):.

9.

A Wide-Range Displacement Sensor Based on Plastic Fiber Macro-Bend Coupling.

Liu J, Hou Y, Zhang H, Jia P, Su S, Fang G, Liu W, Xiong J.

Sensors (Basel). 2017 Jan 20;17(1). pii: E196. doi: 10.3390/s17010196.

10.

Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

Yao Z, Liang T, Jia P, Hong Y, Qi L, Lei C, Zhang B, Li W, Zhang D, Xiong J.

Sensors (Basel). 2016 Jul 22;16(7). pii: E1142. doi: 10.3390/s16071142.

11.

A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit.

Yao Z, Liang T, Jia P, Hong Y, Qi L, Lei C, Zhang B, Xiong J.

Sensors (Basel). 2016 Jun 18;16(6). pii: E913. doi: 10.3390/s16060913.

12.

An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

Xiong J, Li C, Jia P, Chen X, Zhang W, Liu J, Xue C, Tan Q.

Sensors (Basel). 2015 Aug 31;15(9):21844-56. doi: 10.3390/s150921844.

13.

Review of Research Status and Development Trends of Wireless Passive LC Resonant Sensors for Harsh Environments.

Li C, Tan Q, Jia P, Zhang W, Liu J, Xue C, Xiong J.

Sensors (Basel). 2015 Jun 4;15(6):13097-109. doi: 10.3390/s150613097. Review.

14.

A high temperature capacitive pressure sensor based on alumina ceramic for in situ measurement at 600 °C.

Tan Q, Li C, Xiong J, Jia P, Zhang W, Liu J, Xue C, Hong Y, Ren Z, Luo T.

Sensors (Basel). 2014 Jan 30;14(2):2417-30. doi: 10.3390/s140202417.

Supplemental Content

Loading ...
Support Center