Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 47

1.

Genome Sequence of an Aspergillus flavus CA14 Strain That Is Widely Used in Gene Function Studies.

Chang PK, Scharfenstein LL, Mack B, Hua SST.

Microbiol Resour Announc. 2019 Aug 15;8(33). pii: e00837-19. doi: 10.1128/MRA.00837-19.

PMID:
31416879
2.

Identification of a copper-transporting ATPase involved in biosynthesis of A. flavus conidial pigment.

Chang PK, Scharfenstein LL, Mack B, Wei Q, Gilbert M, Lebar M, Cary JW.

Appl Microbiol Biotechnol. 2019 Jun;103(12):4889-4897. doi: 10.1007/s00253-019-09820-0. Epub 2019 Apr 29.

PMID:
31037381
3.
4.

Monitoring Metabolite Production of Aflatoxin Biosynthesis by Orbitrap Fusion Mass Spectrometry and a D-Optimal Mixture Design Method.

Xie H, Wang X, Zhang L, Wang T, Zhang W, Jiang J, Chang PK, Chen ZY, Bhatnagar D, Zhang Q, Li P.

Anal Chem. 2018 Dec 18;90(24):14331-14338. doi: 10.1021/acs.analchem.8b03703. Epub 2018 Dec 3.

PMID:
30444348
5.

Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection.

Chang PK, Zhang Q, Scharfenstein L, Mack B, Yoshimi A, Miyazawa K, Abe K.

Appl Microbiol Biotechnol. 2018 Jun;102(12):5209-5220. doi: 10.1007/s00253-018-9012-7. Epub 2018 Apr 25.

PMID:
29696338
6.

The Aspergillus flavus Homeobox Gene, hbx1, is Required for Development and Aflatoxin Production.

Cary JW, Harris-Coward P, Scharfenstein L, Mack BM, Chang PK, Wei Q, Lebar M, Carter-Wientjes C, Majumdar R, Mitra C, Banerjee S, Chanda A.

Toxins (Basel). 2017 Oct 12;9(10). pii: E315. doi: 10.3390/toxins9100315.

7.

Cyclopiazonic Acid Is a Pathogenicity Factor for Aspergillus flavus and a Promising Target for Screening Germplasm for Ear Rot Resistance.

Chalivendra SC, DeRobertis C, Chang PK, Damann KE.

Mol Plant Microbe Interact. 2017 May;30(5):361-373. doi: 10.1094/MPMI-02-17-0026-R. Epub 2017 Apr 24.

8.

Aspergillus flavus aswA, a gene homolog of Aspergillus nidulans oefC, regulates sclerotial development and biosynthesis of sclerotium-associated secondary metabolites.

Chang PK, Scharfenstein LL, Li RW, Arroyo-Manzanares N, De Saeger S, Diana Di Mavungu J.

Fungal Genet Biol. 2017 Jul;104:29-37. doi: 10.1016/j.fgb.2017.04.006. Epub 2017 Apr 22.

PMID:
28442441
9.

The Aspergillus flavus fluP-associated metabolite promotes sclerotial production.

Chang PK, Scharfenstein LL, Ehrlich KC, Diana Di Mavungu J.

Fungal Biol. 2016 Oct;120(10):1258-68. doi: 10.1016/j.funbio.2016.07.010. Epub 2016 Jul 30.

PMID:
27647242
10.

Development of an Enzyme-Linked Immunosorbent Assay Method Specific for the Detection of G-Group Aflatoxins.

Li P, Zhou Q, Wang T, Zhou H, Zhang W, Ding X, Zhang Z, Chang PK, Zhang Q.

Toxins (Basel). 2015 Dec 28;8(1). pii: E5. doi: 10.3390/toxins8010005.

11.
12.

High sequence variations in the region containing genes encoding a cellular morphogenesis protein and the repressor of sexual development help to reveal origins of Aspergillus oryzae.

Chang PK, Scharfenstein LL, Solorzano CD, Abbas HK, Hua SS, Jones WA, Zablotowicz RM.

Int J Food Microbiol. 2015 May 4;200:66-71. doi: 10.1016/j.ijfoodmicro.2015.01.021. Epub 2015 Feb 7.

PMID:
25689355
13.

Genetic variability of Aspergillus flavus isolates from a Mississippi corn field.

Solorzano CD, Abbas HK, Zablotowicz RM, Chang PK, Jones WA.

ScientificWorldJournal. 2014;2014:356059. doi: 10.1155/2014/356059. Epub 2014 Nov 12.

14.

Global health issues of aflatoxins in food and agriculture: challenges and opportunities.

Razzaghi-Abyaneh M, Chang PK, Shams-Ghahfarokhi M, Rai M.

Front Microbiol. 2014 Aug 12;5:420. doi: 10.3389/fmicb.2014.00420. eCollection 2014. No abstract available.

15.

Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery.

Chang PK, Scharfenstein LL, Mack B, Yu J, Ehrlich KC.

Fungal Genet Biol. 2014 Jul;68:39-47. doi: 10.1016/j.fgb.2014.04.007. Epub 2014 Apr 26.

PMID:
24780887
16.

Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.

Chang PK, Scharfenstein LL, Li P, Ehrlich KC.

Fungal Genet Biol. 2013 Sep-Oct;58-59:71-9. doi: 10.1016/j.fgb.2013.08.009. Epub 2013 Aug 29.

PMID:
23994319
17.

Genome-wide analysis of the Zn(II)₂Cys₆ zinc cluster-encoding gene family in Aspergillus flavus.

Chang PK, Ehrlich KC.

Appl Microbiol Biotechnol. 2013 May;97(10):4289-300. doi: 10.1007/s00253-013-4865-2. Epub 2013 Apr 6. Review.

PMID:
23563886
18.

Enhancement of commercial antifungal agents by Kojic Acid.

Kim JH, Chang PK, Chan KL, Faria NC, Mahoney N, Kim YK, Martins Mde L, Campbell BC.

Int J Mol Sci. 2012 Oct 26;13(11):13867-80. doi: 10.3390/ijms131113867.

19.

Deletion of the Aspergillus flavus orthologue of A. nidulans fluG reduces conidiation and promotes production of sclerotia but does not abolish aflatoxin biosynthesis.

Chang PK, Scharfenstein LL, Mack B, Ehrlich KC.

Appl Environ Microbiol. 2012 Nov;78(21):7557-63. doi: 10.1128/AEM.01241-12. Epub 2012 Aug 17.

20.

Effects of laeA deletion on Aspergillus flavus conidial development and hydrophobicity may contribute to loss of aflatoxin production.

Chang PK, Scharfenstein LL, Ehrlich KC, Wei Q, Bhatnagar D, Ingber BF.

Fungal Biol. 2012 Feb;116(2):298-307. doi: 10.1016/j.funbio.2011.12.003. Epub 2011 Dec 17.

PMID:
22289775

Supplemental Content

Loading ...
Support Center