Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 16

1.

The Parkinson's disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human.

Mir R, Tonelli F, Lis P, Macartney T, Polinski NK, Martinez TN, Chou MY, Howden AJM, König T, Hotzy C, Milenkovic I, Brücke T, Zimprich A, Sammler E, Alessi DR.

Biochem J. 2018 Jun 6;475(11):1861-1883. doi: 10.1042/BCJ20180248.

2.

Occurrence of reproductive disorders in pig herds with and without Chlamydia suis infection - statistical analysis of breeding parameters.

Rypuła K, Kumala A, Płoneczka-Janeczko K, Lis P, Karuga-Kuźniewska E, Dudek K, Całkosiński I, Kuźnik P, Chorbiński P.

Anim Sci J. 2018 May;89(5):817-824. doi: 10.1111/asj.13000. Epub 2018 Mar 13.

PMID:
29536596
3.

Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation.

Madero-Pérez J, Fdez E, Fernández B, Lara Ordóñez AJ, Blanca Ramírez M, Gómez-Suaga P, Waschbüsch D, Lobbestael E, Baekelandt V, Nairn AC, Ruiz-Martínez J, Aiastui A, López de Munain A, Lis P, Comptdaer T, Taymans JM, Chartier-Harlin MC, Beilina A, Gonnelli A, Cookson MR, Greggio E, Hilfiker S.

Mol Neurodegener. 2018 Jan 23;13(1):3. doi: 10.1186/s13024-018-0235-y.

4.

Rab29 activation of the Parkinson's disease-associated LRRK2 kinase.

Purlyte E, Dhekne HS, Sarhan AR, Gomez R, Lis P, Wightman M, Martinez TN, Tonelli F, Pfeffer SR, Alessi DR.

EMBO J. 2018 Jan 4;37(1):1-18. doi: 10.15252/embj.201798099. Epub 2017 Dec 6.

5.

Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson's disease kinase.

Lis P, Burel S, Steger M, Mann M, Brown F, Diez F, Tonelli F, Holton JL, Ho PW, Ho SL, Chou MY, Polinski NK, Martinez TN, Davies P, Alessi DR.

Biochem J. 2018 Jan 2;475(1):1-22. doi: 10.1042/BCJ20170802.

6.

Interrogating Parkinson's disease LRRK2 kinase pathway activity by assessing Rab10 phosphorylation in human neutrophils.

Fan Y, Howden AJM, Sarhan AR, Lis P, Ito G, Martinez TN, Brockmann K, Gasser T, Alessi DR, Sammler EM.

Biochem J. 2018 Jan 2;475(1):23-44. doi: 10.1042/BCJ20170803.

7.

Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis.

Steger M, Diez F, Dhekne HS, Lis P, Nirujogi RS, Karayel O, Tonelli F, Martinez TN, Lorentzen E, Pfeffer SR, Alessi DR, Mann M.

Elife. 2017 Nov 10;6. pii: e31012. doi: 10.7554/eLife.31012.

8.

The HK2 Dependent "Warburg Effect" and Mitochondrial Oxidative Phosphorylation in Cancer: Targets for Effective Therapy with 3-Bromopyruvate.

Lis P, Dyląg M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S.

Molecules. 2016 Dec 15;21(12). pii: E1730. Review.

9.

Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors.

Ito G, Katsemonova K, Tonelli F, Lis P, Baptista MA, Shpiro N, Duddy G, Wilson S, Ho PW, Ho SL, Reith AD, Alessi DR.

Biochem J. 2016 Sep 1;473(17):2671-85. doi: 10.1042/BCJ20160557. Epub 2016 Jul 29.

10.

Screening the yeast genome for energetic metabolism pathways involved in a phenotypic response to the anti-cancer agent 3-bromopyruvate.

Lis P, Jurkiewicz P, Cal-Bąkowska M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S.

Oncotarget. 2016 Mar 1;7(9):10153-73. doi: 10.18632/oncotarget.7174.

11.

Novel locked nucleic acid (LNA)-based probe for the rapid identification of Chlamydia suis using real-time PCR.

Lis P, Kumala A, Spalinski M, Rypula K.

BMC Vet Res. 2014 Sep 24;10:225. doi: 10.1186/s12917-014-0225-4.

12.

Identification of bap and icaA genes involved in biofilm formation in coagulase negative staphylococci isolated from feline conjunctiva.

Płoneczka-Janeczko K, Lis P, Bierowiec K, Rypuła K, Chorbiński P.

Vet Res Commun. 2014 Dec;38(4):337-46. doi: 10.1007/s11259-014-9615-0. Epub 2014 Sep 2.

13.

Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

Majkowska-Skrobek G, Augustyniak D, Lis P, Bartkowiak A, Gonchar M, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S.

Anticancer Drugs. 2014 Jul;25(6):673-82. doi: 10.1097/CAD.0000000000000094.

PMID:
24557015
14.

3-Bromopyruvate: a novel antifungal agent against the human pathogen Cryptococcus neoformans.

Dyląg M, Lis P, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, Ułaszewski S.

Biochem Biophys Res Commun. 2013 May 3;434(2):322-7. doi: 10.1016/j.bbrc.2013.02.125. Epub 2013 Mar 26.

PMID:
23541578
15.

Transport and cytotoxicity of the anticancer drug 3-bromopyruvate in the yeast Saccharomyces cerevisiae.

Lis P, Zarzycki M, Ko YH, Casal M, Pedersen PL, Goffeau A, Ułaszewski S.

J Bioenerg Biomembr. 2012 Feb;44(1):155-61. doi: 10.1007/s10863-012-9421-8. Epub 2012 Feb 23.

PMID:
22359102
16.

[Pathways of arsenic uptake in prokaryotic and eukaryotic cells].

Lis P, Litwin I, Maciaszczyk-Dziubińska E.

Postepy Biochem. 2010;56(4):400-8. Review. Polish.

PMID:
21473044

Supplemental Content

Loading ...
Support Center