Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells.

Janus P, Toma-Jonik A, Vydra N, Mrowiec K, Korfanty J, Chadalski M, Widłak P, Dudek K, Paszek A, Rusin M, Polańska J, Widłak W.

Cell Death Differ. 2020 Jan 29. doi: 10.1038/s41418-020-0501-8. [Epub ahead of print]

PMID:
31996779
2.

PHLDA1 Does Not Contribute Directly to Heat Shock-Induced Apoptosis of Spermatocytes.

Janus P, Mrowiec K, Vydra N, Widłak P, Toma-Jonik A, Korfanty J, Smolarczyk R, Widłak W.

Int J Mol Sci. 2019 Dec 30;21(1). pii: E267. doi: 10.3390/ijms21010267.

3.

17β-Estradiol Activates HSF1 via MAPK Signaling in ERα-Positive Breast Cancer Cells.

Vydra N, Janus P, Toma-Jonik A, Stokowy T, Mrowiec K, Korfanty J, Długajczyk A, Wojtaś B, Gielniewski B, Widłak W.

Cancers (Basel). 2019 Oct 11;11(10). pii: E1533. doi: 10.3390/cancers11101533.

4.

Interplay between HSF1 and p53 signaling pathways in cancer initiation and progression: non-oncogene and oncogene addiction.

Toma-Jonik A, Vydra N, Janus P, Widłak W.

Cell Oncol (Dordr). 2019 Oct;42(5):579-589. doi: 10.1007/s13402-019-00452-0. Epub 2019 Jun 10. Review.

PMID:
31183804
5.

RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation.

Szołtysek K, Janus P, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Cockell S, Perkins ND, Kimmel M, Widlak P.

BMC Genomics. 2018 Nov 12;19(1):813. doi: 10.1186/s12864-018-5211-y.

6.

The Alzheimer's disease-associated TREM2 gene is regulated by p53 tumor suppressor protein.

Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, Janus P, Łasut B, Rusin M.

Neurosci Lett. 2018 Aug 10;681:62-67. doi: 10.1016/j.neulet.2018.05.037. Epub 2018 May 26.

PMID:
29842899
7.

Pro-inflammatory cytokine and high doses of ionizing radiation have similar effects on the expression of NF-kappaB-dependent genes.

Janus P, Szołtysek K, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Iwanaszko M, Braun R, Cockell S, Perkins ND, Kimmel M, Widlak P.

Cell Signal. 2018 Jun;46:23-31. doi: 10.1016/j.cellsig.2018.02.011. Epub 2018 Feb 21.

PMID:
29476964
8.

Irradiation with UV-C inhibits TNF-α-dependent activation of the NF-κB pathway in a mechanism potentially mediated by reactive oxygen species.

Szoltysek K, Walaszczyk A, Janus P, Kimmel M, Widlak P.

Genes Cells. 2017 Jan;22(1):45-58. doi: 10.1111/gtc.12455. Epub 2016 Dec 15.

9.

Erratum to: A novel mathematical model of ATM/p53/NF-κB pathways points to the importance of the DDR switch-off mechanisms.

Jonak K, Kurpas M, Szoltysek K, Janus P, Abramowicz A, Puszynski K.

BMC Syst Biol. 2016 Oct 21;10(1):99. No abstract available.

10.

A novel mathematical model of ATM/p53/NF- κB pathways points to the importance of the DDR switch-off mechanisms.

Jonak K, Kurpas M, Szoltysek K, Janus P, Abramowicz A, Puszynski K.

BMC Syst Biol. 2016 Aug 15;10(1):75. doi: 10.1186/s12918-016-0293-0. Erratum in: BMC Syst Biol. 2016 Oct 21;10 (1):99.

11.

Cross talk between cytokine and hyperthermia-induced pathways: identification of different subsets of NF-κB-dependent genes regulated by TNFα and heat shock.

Janus P, Stokowy T, Jaksik R, Szoltysek K, Handschuh L, Podkowinski J, Widlak W, Kimmel M, Widlak P.

Mol Genet Genomics. 2015 Oct;290(5):1979-90. doi: 10.1007/s00438-015-1055-1. Epub 2015 May 6.

12.

NF-κB signaling pathway is inhibited by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins.

Janus P, Pakuła-Cis M, Kalinowska-Herok M, Kashchak N, Szołtysek K, Pigłowski W, Widlak W, Kimmel M, Widlak P.

Genes Cells. 2011 Dec;16(12):1168-75. doi: 10.1111/j.1365-2443.2011.01560.x. Epub 2011 Nov 13.

Supplemental Content

Loading ...
Support Center