Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 11

1.

Modeling of aromatics formation in fuel-rich methane oxy-combustion with an automatically generated pressure-dependent mechanism.

Chu TC, Buras ZJ, Oßwald P, Liu M, Goldman MJ, Green WH.

Phys Chem Chem Phys. 2019 Jan 2;21(2):813-832. doi: 10.1039/c8cp06097e.

PMID:
30556072
2.

Impact of Alternative Jet Fuels on Engine Exhaust Composition During the 2015 ECLIF Ground-Based Measurements Campaign.

Schripp T, Anderson B, Crosbie EC, Moore RH, Herrmann F, Oßwald P, Wahl C, Kapernaum M, Köhler M, Le Clercq P, Rauch B, Eichler P, Mikoviny T, Wisthaler A.

Environ Sci Technol. 2018 Apr 17;52(8):4969-4978. doi: 10.1021/acs.est.7b06244. Epub 2018 Apr 6.

PMID:
29601722
3.
4.

An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

Oßwald P, Köhler M.

Rev Sci Instrum. 2015 Oct;86(10):105109. doi: 10.1063/1.4932608.

PMID:
26520986
5.

Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part I: Furan.

Liu D, Togbé C, Tran LS, Felsmann D, Oßwald P, Nau P, Koppmann J, Lackner A, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F, Kohse-Höinghaus K.

Combust Flame. 2014 Mar 1;161(3):748-765.

6.

Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.

Tran LS, Togbé C, Liu D, Felsmann D, Oßwald P, Glaude PA, Fournet R, Sirjean B, Battin-Leclerc F, Kohse-Höinghaus K.

Combust Flame. 2014 Mar 1;161(3):766-779.

7.

Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part III: 2,5-Dimethylfuran.

Togbé C, Tran LS, Liu D, Felsmann D, Oßwald P, Glaude PA, Sirjean B, Fournet R, Battin-Leclerc F, Kohse-Höinghaus K.

Combust Flame. 2014 Mar 1;161(3):780-797.

8.

Biofuel combustion chemistry: from ethanol to biodiesel.

Kohse-Höinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR.

Angew Chem Int Ed Engl. 2010 May 10;49(21):3572-97. doi: 10.1002/anie.200905335. Review.

PMID:
20446278
9.

Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies.

Wang J, Chaos M, Yang B, Cool TA, Dryer FL, Kasper T, Hansen N, Osswald P, Kohse-Höinghaus K, Westmoreland PR.

Phys Chem Chem Phys. 2009 Mar 7;11(9):1328-39. doi: 10.1039/b815988b. Epub 2009 Jan 15.

PMID:
19224033
10.

Isomer-specific influences on the composition of reaction intermediates in dimethyl ether/propene and ethanol/propene flame.

Wang J, Struckmeier U, Yang B, Cool TA, Osswald P, Kohse-Höinghaus K, Kasper T, Hansen N, Westmoreland PR.

J Phys Chem A. 2008 Oct 2;112(39):9255-65. doi: 10.1021/jp8011188. Epub 2008 May 28.

PMID:
18505242
11.

Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters.

Osswald P, Struckmeier U, Kasper T, Kohse-Höinghaus K, Wang J, Cool TA, Hansen N, Westmoreland PR.

J Phys Chem A. 2007 May 17;111(19):4093-101. Epub 2007 Mar 22.

PMID:
17388390

Supplemental Content

Loading ...
Support Center