Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 23

1.

Complementary Design for Pairing between Two Types of Nanoparticles Mediated by a Bispecific Antibody: Bottom-Up Formation of Porous Materials from Nanoparticles.

Niide T, Manabe N, Nakazawa H, Akagi K, Hattori T, Kumagai I, Umetsu M.

Langmuir. 2019 Feb 26;35(8):3067-3076. doi: 10.1021/acs.langmuir.8b03687. Epub 2019 Feb 11.

PMID:
30689940
2.

Phosphate-Catalyzed Succinimide Formation from an NGR-Containing Cyclic Peptide: A Novel Mechanism for Deammoniation of the Tetrahedral Intermediate.

Kirikoshi R, Manabe N, Takahashi O.

Molecules. 2018 Aug 31;23(9). pii: E2217. doi: 10.3390/molecules23092217.

3.

Phosphate-Catalyzed Succinimide Formation from Asp Residues: A Computational Study of the Mechanism.

Kirikoshi R, Manabe N, Takahashi O.

Int J Mol Sci. 2018 Feb 24;19(2). pii: E637. doi: 10.3390/ijms19020637.

4.
6.

Molecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62.

Fukuyoshi S, Kometani M, Watanabe Y, Hiratsuka M, Yamaotsu N, Hirono S, Manabe N, Takahashi O, Oda A.

PLoS One. 2016 Apr 5;11(4):e0152946. doi: 10.1371/journal.pone.0152946. eCollection 2016.

7.

A Computational Study of the Mechanism of Succinimide Formation in the Asn-His Sequence: Intramolecular Catalysis by the His Side Chain.

Takahashi O, Manabe N, Kirikoshi R.

Molecules. 2016 Mar 9;21(3):327. doi: 10.3390/molecules21030327.

8.

Acetic acid-catalyzed formation of N-phenylphthalimide from phthalanilic acid: a computational study of the mechanism.

Takahashi O, Kirikoshi R, Manabe N.

Int J Mol Sci. 2015 May 28;16(6):12174-84. doi: 10.3390/ijms160612174.

9.

Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

Manabe N, Kirikoshi R, Takahashi O.

Int J Mol Sci. 2015 Mar 31;16(4):7261-72. doi: 10.3390/ijms16047261.

10.

Acetic acid can catalyze succinimide formation from aspartic acid residues by a concerted bond reorganization mechanism: a computational study.

Takahashi O, Kirikoshi R, Manabe N.

Int J Mol Sci. 2015 Jan 12;16(1):1613-26. doi: 10.3390/ijms16011613.

11.

Roles of intramolecular and intermolecular hydrogen bonding in a three-water-assisted mechanism of succinimide formation from aspartic acid residues.

Takahashi O, Kirikoshi R, Manabe N.

Molecules. 2014 Aug 4;19(8):11440-52. doi: 10.3390/molecules190811440.

12.

Evaluation of anti-inflammatory drug-conjugated silicon quantum dots: their cytotoxicity and biological effect.

Hanada S, Fujioka K, Futamura Y, Manabe N, Hoshino A, Yamamoto K.

Int J Mol Sci. 2013 Jan 10;14(1):1323-34. doi: 10.3390/ijms14011323.

13.

Conjugation of quantum dots and JT95 IgM monoclonal antibody for thyroid carcinoma without abolishing the specificity and activity of the antibody.

Watanabe M, Fujioka K, Akiyama N, Takeyama H, Manabe N, Yamamoto K, Manome Y.

IEEE Trans Nanobioscience. 2011 Mar;10(1):30-5. doi: 10.1109/TNB.2011.2125800.

PMID:
21521661
14.

Organ distribution of quantum dots after intraperitoneal administration, with special reference to area-specific distribution in the brain.

Kato S, Itoh K, Yaoi T, Tozawa T, Yoshikawa Y, Yasui H, Kanamura N, Hoshino A, Manabe N, Yamamoto K, Fushiki S.

Nanotechnology. 2010 Aug 20;21(33):335103. doi: 10.1088/0957-4484/21/33/335103. Epub 2010 Jul 27.

PMID:
20660952
15.

High-definition slit-lamp video camera system.

Yamamoto S, Manabe N, Yamamoto K.

Ophthalmic Surg Lasers Imaging. 2010 Mar-Apr;41(2):276-8. doi: 10.3928/15428877-20100303-20.

PMID:
20307050
16.

Immune response induced by fluorescent nanocrystal quantum dots in vitro and in vivo.

Hoshino A, Hanada S, Manabe N, Nakayama T, Yamamoto K.

IEEE Trans Nanobioscience. 2009 Mar;8(1):51-7. doi: 10.1109/TNB.2009.2016550. Epub 2009 Mar 16.

PMID:
19304501
17.

GFP expression by intracellular gene delivery of GFP-coding fragments using nanocrystal quantum dots.

Hoshino A, Manabe N, Fujioka K, Hanada S, Yasuhara M, Kondo A, Yamamoto K.

Nanotechnology. 2008 Dec 10;19(49):495102. doi: 10.1088/0957-4484/19/49/495102. Epub 2008 Nov 18.

PMID:
21730662
18.

Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration.

Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K.

Nanotechnology. 2008 Oct 15;19(41):415102. doi: 10.1088/0957-4484/19/41/415102. Epub 2008 Sep 3.

PMID:
21832637
19.
20.

Visualizing vitreous using quantum dots as imaging agents.

Yamamoto S, Manabe N, Fujioka K, Hoshino A, Yamamoto K.

IEEE Trans Nanobioscience. 2007 Mar;6(1):94-8.

PMID:
17393855

Supplemental Content

Loading ...
Support Center