Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 48

1.

Gait training using a robotic hip exoskeleton improves metabolic gait efficiency in the elderly.

Martini E, Crea S, Parri A, Bastiani L, Faraguna U, McKinney Z, Molino-Lova R, Pratali L, Vitiello N.

Sci Rep. 2019 May 9;9(1):7157. doi: 10.1038/s41598-019-43628-2.

2.

Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.

Trigili E, Grazi L, Crea S, Accogli A, Carpaneto J, Micera S, Vitiello N, Panarese A.

J Neuroeng Rehabil. 2019 Mar 29;16(1):45. doi: 10.1186/s12984-019-0512-1.

3.

Classification of Lifting Techniques for Application of A Robotic Hip Exoskeleton.

Chen B, Lanotte F, Grazi L, Vitiello N, Crea S.

Sensors (Basel). 2019 Feb 25;19(4). pii: E963. doi: 10.3390/s19040963.

4.

The Challenges and Achievements of Experimental Implementation of an Active Transfemoral Prosthesis Based on Biological Quasi-Stiffness: The CYBERLEGs Beta-Prosthesis.

Flynn L, Geeroms J, Jimenez-Fabian R, Heins S, Vanderborght B, Munih M, Molino Lova R, Vitiello N, Lefeber D.

Front Neurorobot. 2018 Dec 4;12:80. doi: 10.3389/fnbot.2018.00080. eCollection 2018.

5.

Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living.

Crea S, Nann M, Trigili E, Cordella F, Baldoni A, Badesa FJ, Catalán JM, Zollo L, Vitiello N, Aracil NG, Soekadar SR.

Sci Rep. 2018 Jul 17;8(1):10823. doi: 10.1038/s41598-018-29091-5.

6.

A Real-Time Lift Detection Strategy for a Hip Exoskeleton.

Chen B, Grazi L, Lanotte F, Vitiello N, Crea S.

Front Neurorobot. 2018 Apr 12;12:17. doi: 10.3389/fnbot.2018.00017. eCollection 2018.

7.

Learning by Demonstration for Motion Planning of Upper-Limb Exoskeletons.

Lauretti C, Cordella F, Ciancio AL, Trigili E, Catalan JM, Badesa FJ, Crea S, Pagliara SM, Sterzi S, Vitiello N, Garcia Aracil N, Zollo L.

Front Neurorobot. 2018 Feb 23;12:5. doi: 10.3389/fnbot.2018.00005. eCollection 2018.

8.

Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.

Grazi L, Crea S, Parri A, Molino Lova R, Micera S, Vitiello N.

Front Neurosci. 2018 Feb 14;12:71. doi: 10.3389/fnins.2018.00071. eCollection 2018.

9.

Technologically-advanced assessment of upper-limb spasticity: a pilot study.

Posteraro F, Crea S, Mazzoleni S, Berteanu M, Ciobanu I, Vitiello N, Cempini M, Gervasio S, Mrachacz-Kersting N.

Eur J Phys Rehabil Med. 2018 Aug;54(4):536-544. doi: 10.23736/S1973-9087.17.04815-8. Epub 2017 Sep 4.

10.

Whole Body Awareness for Controlling a Robotic Transfemoral Prosthesis.

Parri A, Martini E, Geeroms J, Flynn L, Pasquini G, Crea S, Molino Lova R, Lefeber D, Kamnik R, Munih M, Vitiello N.

Front Neurorobot. 2017 May 30;11:25. doi: 10.3389/fnbot.2017.00025. eCollection 2017.

11.

Erratum to: Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.

d'Elia N, Vanetti F, Cempini M, Pasquini G, Parri A, Rabuffetti M, Ferrarin M, Lova RM, Vitiello N.

J Neuroeng Rehabil. 2017 Jun 5;14(1):51. doi: 10.1186/s12984-017-0262-x. No abstract available.

12.

Phase-II Clinical Validation of a Powered Exoskeleton for the Treatment of Elbow Spasticity.

Crea S, Cempini M, Mazzoleni S, Carrozza MC, Posteraro F, Vitiello N.

Front Neurosci. 2017 May 12;11:261. doi: 10.3389/fnins.2017.00261. eCollection 2017.

13.

Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.

d'Elia N, Vanetti F, Cempini M, Pasquini G, Parri A, Rabuffetti M, Ferrarin M, Molino Lova R, Vitiello N.

J Neuroeng Rehabil. 2017 Apr 14;14(1):29. doi: 10.1186/s12984-017-0237-y. Erratum in: J Neuroeng Rehabil. 2017 Jun 5;14 (1):51.

14.

Experimental Validation of Motor Primitive-Based Control for Leg Exoskeletons during Continuous Multi-Locomotion Tasks.

Ruiz Garate V, Parri A, Yan T, Munih M, Molino Lova R, Vitiello N, Ronsse R.

Front Neurorobot. 2017 Mar 17;11:15. doi: 10.3389/fnbot.2017.00015. eCollection 2017.

15.

Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

Zheng E, Manca S, Yan T, Parri A, Vitiello N, Wang Q.

IEEE Trans Biomed Eng. 2017 Oct;64(10):2419-2430. doi: 10.1109/TBME.2017.2672720. Epub 2017 Feb 23.

PMID:
28252387
16.

Time-Discrete Vibrotactile Feedback Contributes to Improved Gait Symmetry in Patients With Lower Limb Amputations: Case Series.

Crea S, Edin BB, Knaepen K, Meeusen R, Vitiello N.

Phys Ther. 2017 Feb 1;97(2):198-207. doi: 10.2522/ptj.20150441. No abstract available.

PMID:
28204796
17.

Vision-Based Pose Estimation for Robot-Mediated Hand Telerehabilitation.

Airò Farulla G, Pianu D, Cempini M, Cortese M, Russo LO, Indaco M, Nerino R, Chimienti A, Oddo CM, Vitiello N.

Sensors (Basel). 2016 Feb 5;16(2):208. doi: 10.3390/s16020208.

18.

Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: Preliminary results.

Yuan K, Parri A, Yan T, Wang L, Munih M, Vitiello N, Wang Q.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3893-6. doi: 10.1109/EMBC.2015.7319244.

PMID:
26737144
19.

Gastrocnemius myoelectric control of a robotic hip exoskeleton.

Grazi L, Crea S, Parri A, Yan T, Cortese M, Giovacchini F, Cempini M, Pasquini G, Micera S, Vitiello N.

Conf Proc IEEE Eng Med Biol Soc. 2015;2015:3881-4. doi: 10.1109/EMBC.2015.7319241.

PMID:
26737141
20.

Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design.

Almenara M, Cempini M, Gómez C, Cortese M, Martín C, Medina J, Vitiello N, Opisso E.

Disabil Rehabil Assist Technol. 2017 Jan;12(1):84-96. Epub 2015 Sep 16.

PMID:
26376019

Supplemental Content

Loading ...
Support Center