Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 11

1.

Experimental evolution: its principles and applications in developing stress-tolerant yeasts.

Swamy KBS, Zhou N.

Appl Microbiol Biotechnol. 2019 Mar;103(5):2067-2077. doi: 10.1007/s00253-019-09616-2. Epub 2019 Jan 18. Review.

PMID:
30659332
2.

Improvement of thermotolerance in Lachancea thermotolerans using a bacterial selection pressure.

Zhou N, Ishchuk OP, Knecht W, Compagno C, Piškur J.

J Ind Microbiol Biotechnol. 2019 Feb;46(2):133-145. doi: 10.1007/s10295-018-2107-4. Epub 2018 Nov 28.

3.

Streptomyces albulus yields ε-poly-L-lysine and other products from salt-contaminated glycerol waste.

Dodd A, Swanevelder D, Zhou N, Brady D, Hallsworth JE, Rumbold K.

J Ind Microbiol Biotechnol. 2018 Dec;45(12):1083-1090. doi: 10.1007/s10295-018-2082-9. Epub 2018 Sep 20.

PMID:
30238272
4.

Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment.

Zhou N, Katz M, Knecht W, Compagno C, Piškur J.

PLoS One. 2018 Apr 6;13(4):e0194911. doi: 10.1371/journal.pone.0194911. eCollection 2018.

5.

Yeast-bacteria competition induced new metabolic traits through large-scale genomic rearrangements in Lachancea kluyveri.

Zhou N, Bottagisi S, Katz M, Schacherer J, Friedrich A, Gojkovic Z, Swamy KBS, Knecht W, Compagno C, Piškur J.

FEMS Yeast Res. 2017 Sep 1;17(6). doi: 10.1093/femsyr/fox060.

PMID:
28910985
6.

Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker's yeasts in the modern bakery.

Zhou N, Schifferdecker AJ, Gamero A, Compagno C, Boekhout T, Piškur J, Knecht W.

Int J Food Microbiol. 2017 Jun 5;250:45-58. doi: 10.1016/j.ijfoodmicro.2017.03.013. Epub 2017 Mar 22.

PMID:
28365494
7.

Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri.

Zhou N, Swamy KB, Leu JY, McDonald MJ, Galafassi S, Compagno C, Piškur J.

PLoS One. 2017 Mar 10;12(3):e0173318. doi: 10.1371/journal.pone.0173318. eCollection 2017.

8.

Erratum to: Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP.

Appl Microbiol Biotechnol. 2016 Apr;100(7):3233. doi: 10.1007/s00253-016-7349-3. No abstract available.

9.

Alcohol dehydrogenase gene ADH3 activates glucose alcoholic fermentation in genetically engineered Dekkera bruxellensis yeast.

Schifferdecker AJ, Siurkus J, Andersen MR, Joerck-Ramberg D, Ling Z, Zhou N, Blevins JE, Sibirny AA, Piškur J, Ishchuk OP.

Appl Microbiol Biotechnol. 2016 Apr;100(7):3219-31. doi: 10.1007/s00253-015-7266-x. Epub 2016 Jan 8. Erratum in: Appl Microbiol Biotechnol. 2016 Apr;100(7):3233.

10.

Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla.

Dashko S, Zhou N, Tinta T, Sivilotti P, Lemut MS, Trost K, Gamero A, Boekhout T, Butinar L, Vrhovsek U, Piskur J.

J Ind Microbiol Biotechnol. 2015 Jul;42(7):997-1010. doi: 10.1007/s10295-015-1620-y. Epub 2015 Apr 23.

PMID:
25903098
11.

Why, when, and how did yeast evolve alcoholic fermentation?

Dashko S, Zhou N, Compagno C, Piškur J.

FEMS Yeast Res. 2014 Sep;14(6):826-32. doi: 10.1111/1567-1364.12161. Epub 2014 Jun 9. Review.

Supplemental Content

Loading ...
Support Center