Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

The Impact of Oxidative Stress on Ribosomes: From Injury to Regulation.

Shcherbik N, Pestov DG.

Cells. 2019 Nov 2;8(11). pii: E1379. doi: 10.3390/cells8111379. Review.

2.

Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae.

Zinskie JA, Ghosh A, Trainor BM, Shedlovskiy D, Pestov DG, Shcherbik N.

J Biol Chem. 2018 Sep 14;293(37):14237-14248. doi: 10.1074/jbc.RA118.004174. Epub 2018 Jul 18.

3.

Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast.

Shedlovskiy D, Zinskie JA, Gardner E, Pestov DG, Shcherbik N.

J Biol Chem. 2017 Nov 10;292(45):18469-18485. doi: 10.1074/jbc.M117.800003. Epub 2017 Sep 22.

4.

One-step hot formamide extraction of RNA from Saccharomyces cerevisiae.

Shedlovskiy D, Shcherbik N, Pestov DG.

RNA Biol. 2017 Dec 2;14(12):1722-1726. doi: 10.1080/15476286.2017.1345417. Epub 2017 Jul 31.

5.

Distinct types of translation termination generate substrates for ribosome-associated quality control.

Shcherbik N, Chernova TA, Chernoff YO, Pestov DG.

Nucleic Acids Res. 2016 Aug 19;44(14):6840-52. doi: 10.1093/nar/gkw566. Epub 2016 Jun 20.

6.

Reduced expression of the mouse ribosomal protein Rpl17 alters the diversity of mature ribosomes by enhancing production of shortened 5.8S rRNA.

Wang M, Parshin AV, Shcherbik N, Pestov DG.

RNA. 2015 Jul;21(7):1240-8. doi: 10.1261/rna.051169.115. Epub 2015 May 20.

7.

Golgi-mediated glycosylation determines residency of the T2 RNase Rny1p in Saccharomyces cerevisiae.

Shcherbik N.

Traffic. 2013 Dec;14(12):1209-27. doi: 10.1111/tra.12122. Epub 2013 Oct 10.

8.

Rapid cytoplasmic turnover of yeast ribosomes in response to rapamycin inhibition of TOR.

Pestov DG, Shcherbik N.

Mol Cell Biol. 2012 Jun;32(11):2135-44. doi: 10.1128/MCB.06763-11. Epub 2012 Mar 26.

9.

The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae.

Shcherbik N, Pestov DG.

RNA. 2011 Aug;17(8):1422-8. doi: 10.1261/rna.2615311. Epub 2011 Jun 10.

10.
11.

Polyadenylation and degradation of incomplete RNA polymerase I transcripts in mammalian cells.

Shcherbik N, Wang M, Lapik YR, Srivastava L, Pestov DG.

EMBO Rep. 2010 Feb;11(2):106-11. doi: 10.1038/embor.2009.271. Epub 2010 Jan 8.

12.

Identification of lysines within membrane-anchored Mga2p120 that are targets of Rsp5p ubiquitination and mediate mobilization of tethered Mga2p90.

Bhattacharya S, Shcherbik N, Vasilescu J, Smith JC, Figeys D, Haines DS.

J Mol Biol. 2009 Jan 23;385(3):718-25. doi: 10.1016/j.jmb.2008.11.018. Epub 2008 Nov 24.

14.

A single PXY motif located within the carboxyl terminus of Spt23p and Mga2p mediates a physical and functional interaction with ubiquitin ligase Rsp5p.

Shcherbik N, Kee Y, Lyon N, Huibregtse JM, Haines DS.

J Biol Chem. 2004 Dec 17;279(51):53892-8. Epub 2004 Oct 5.

15.

Ub on the move.

Shcherbik N, Haines DS.

J Cell Biochem. 2004 Sep 1;93(1):11-9. Review.

PMID:
15352157
16.

Rsp5p is required for ER bound Mga2p120 polyubiquitination and release of the processed/tethered transactivator Mga2p90.

Shcherbik N, Zoladek T, Nickels JT, Haines DS.

Curr Biol. 2003 Jul 15;13(14):1227-33.

17.

Functional analysis of the human orthologue of the RSP5-encoded ubiquitin protein ligase, hNedd4, in yeast.

Gajewska B, Shcherbik N, Oficjalska D, Haines DS, ZoƂadek T.

Curr Genet. 2003 Apr;43(1):1-10. Epub 2003 Feb 8.

PMID:
12684839
18.

Supplemental Content

Loading ...
Support Center