Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity.

Yuba E, Sakaguchi N, Kanda Y, Miyazaki M, Koiwai K.

Vaccines (Basel). 2017 Nov 4;5(4). pii: E41. doi: 10.3390/vaccines5040041.

2.

pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K.

Biomaterials. 2017 Oct;141:272-283. doi: 10.1016/j.biomaterials.2017.07.001. Epub 2017 Jul 3.

PMID:
28704679
3.

A two-component micelle with emergent pH responsiveness by mixing dilauroyl phosphocholine and deoxycholic acid and its delivery of proteins into the cytosol.

Miyamoto N, Fujii S, Mochizuki S, Sakurai K, Sakaguchi N, Koiwai K.

Colloids Surf B Biointerfaces. 2017 Jun 1;154:246-252. doi: 10.1016/j.colsurfb.2017.03.013. Epub 2017 Mar 14.

PMID:
28347946
4.

Effect of molecular adjuvant inclusion in pH-sensitive polymer-modified liposomes on their performance as antigen delivery carriers for cancer immunotherapy.

Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K.

J Control Release. 2015 Sep 10;213:e143. doi: 10.1016/j.jconrel.2015.05.242. Epub 2015 Aug 19. No abstract available.

PMID:
27005105
5.

pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K, Kono K.

Biomaterials. 2015 Oct;67:214-24. doi: 10.1016/j.biomaterials.2015.07.031. Epub 2015 Jul 17.

PMID:
26222284
6.

Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K.

Biomaterials. 2014 Sep;35(28):8186-96. doi: 10.1016/j.biomaterials.2014.05.077. Epub 2014 Jun 23.

PMID:
24969637
7.

The correlation between fusion capability and transfection activity in hybrid complexes of lipoplexes and pH-sensitive liposomes.

Sakaguchi N, Kojima C, Harada A, Koiwai K, Kono K.

Biomaterials. 2008 Oct;29(29):4029-36. doi: 10.1016/j.biomaterials.2008.06.006. Epub 2008 Jul 18.

PMID:
18639929
8.

Effect of transferrin as a ligand of pH-sensitive fusogenic liposome-lipoplex hybrid complexes.

Sakaguchi N, Kojima C, Harada A, Koiwai K, Emi N, Kono K.

Bioconjug Chem. 2008 Aug;19(8):1588-95. doi: 10.1021/bc800126s. Epub 2008 Jul 16.

PMID:
18627196
9.

Gene delivery to dendritic cells mediated by complexes of lipoplexes and pH-sensitive fusogenic polymer-modified liposomes.

Yuba E, Kojima C, Sakaguchi N, Harada A, Koiwai K, Kono K.

J Control Release. 2008 Aug 25;130(1):77-83. doi: 10.1016/j.jconrel.2008.05.007. Epub 2008 May 16.

PMID:
18573563
10.

Preparation of pH-sensitive poly(glycidol) derivatives with varying hydrophobicities: their ability to sensitize stable liposomes to pH.

Sakaguchi N, Kojima C, Harada A, Kono K.

Bioconjug Chem. 2008 May;19(5):1040-8. doi: 10.1021/bc7004736.

PMID:
18419148
11.
12.

Enhancement of transfection activity of lipoplexes by complexation with transferrin-bearing fusogenic polymer-modified liposomes.

Sakaguchi N, Kojima C, Harada A, Koiwai K, Shimizu K, Emi N, Kono K.

Int J Pharm. 2006 Nov 15;325(1-2):186-90. Epub 2006 Jun 13.

PMID:
16844328

Supplemental Content

Loading ...
Support Center