Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 52

1.

A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties.

Chen G, Davis RC, Futaba DN, Sakurai S, Kobashi K, Yumura M, Hata K.

Nanoscale. 2016 Jan 7;8(1):162-71. doi: 10.1039/c5nr05537g.

PMID:
26619935
2.

The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock.

Matsumoto N, Oshima A, Sakurai S, Yamada T, Yumura M, Hata K, Futaba DN.

Nanomaterials (Basel). 2015 Jul 17;5(3):1200-1210. doi: 10.3390/nano5031200.

3.

Scalability of the Heat and Current Treatment on SWCNTs to Improve their Crystallinity and Thermal and Electrical Conductivities.

Matsumoto N, Oshima A, Sakurai S, Yumura M, Hata K, Futaba DN.

Nanoscale Res Lett. 2015 May 16;10:220. doi: 10.1186/s11671-015-0917-0. eCollection 2015.

4.

The relationship between the growth rate and the lifetime in carbon nanotube synthesis.

Chen G, Davis RC, Kimura H, Sakurai S, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 May 21;7(19):8873-8. doi: 10.1039/c5nr01125f.

PMID:
25913386
5.

Current treatment of bulk single walled carbon nanotubes to heal defects without structural change for increased electrical and thermal conductivities.

Matsumoto N, Oshima A, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 May 21;7(19):8707-14. doi: 10.1039/c5nr00170f.

PMID:
25913108
6.

Quantitative assessment of the effect of purity on the properties of single wall carbon nanotubes.

Matsumoto N, Chen G, Yumura M, Futaba DN, Hata K.

Nanoscale. 2015 Mar 12;7(12):5126-33. doi: 10.1039/c4nr07618d.

PMID:
25732951
7.

Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking.

Uetani K, Ata S, Tomonoh S, Yamada T, Yumura M, Hata K.

Adv Mater. 2014 Sep 3;26(33):5857-62. doi: 10.1002/adma.201401736. Epub 2014 Jul 8.

PMID:
25042211
8.

Diameter control of single-walled carbon nanotube forests from 1.3-3.0 nm by arc plasma deposition.

Chen G, Seki Y, Kimura H, Sakurai S, Yumura M, Hata K, Futaba DN.

Sci Rep. 2014 Jan 22;4:3804. doi: 10.1038/srep03804.

9.

Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper.

Sakurai S, Kamada F, Futaba DN, Yumura M, Hata K.

Nanoscale Res Lett. 2013 Dec 27;8(1):546. doi: 10.1186/1556-276X-8-546.

10.

The infinite possible growth ambients that support single-wall carbon nanotube forest growth.

Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K.

Sci Rep. 2013 Nov 26;3:3334. doi: 10.1038/srep03334.

11.

Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities.

Chen G, Futaba DN, Kimura H, Sakurai S, Yumura M, Hata K.

ACS Nano. 2013 Nov 26;7(11):10218-24. doi: 10.1021/nn404504f. Epub 2013 Oct 7.

PMID:
24090543
12.

One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite.

Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba DN, Yumura M, Hata K.

Nat Commun. 2013;4:2202. doi: 10.1038/ncomms3202.

13.

A Fundamental Limitation of Small Diameter Single-Walled Carbon Nanotube Synthesis-A Scaling Rule of the Carbon Nanotube Yield with Catalyst Volume.

Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K.

Materials (Basel). 2013 Jul 2;6(7):2633-2641. doi: 10.3390/ma6072633.

14.

Direct wall number control of carbon nanotube forests from engineered iron catalysts.

Chiang WH, Futaba DN, Yumura M, Hata K.

J Nanosci Nanotechnol. 2013 Apr;13(4):2745-51.

PMID:
23763154
15.

Diameter and density control of single-walled carbon nanotube forests by modulating Ostwald ripening through decoupling the catalyst formation and growth processes.

Sakurai S, Inaguma M, Futaba DN, Yumura M, Hata K.

Small. 2013 Nov 11;9(21):3584-92. doi: 10.1002/smll.201300223. Epub 2013 Apr 26.

PMID:
23625816
16.

Unexpectedly high yield carbon nanotube synthesis from low-activity carbon feedstocks at high concentrations.

Kimura H, Goto J, Yasuda S, Sakurai S, Yumura M, Futaba DN, Hata K.

ACS Nano. 2013 Apr 23;7(4):3150-7. doi: 10.1021/nn305513e. Epub 2013 Mar 8.

PMID:
23458321
17.

Electron Density Modification of Single Wall Carbon Nanotubes (SWCNT) by Liquid-Phase Molecular Adsorption of Hexaiodobenzene.

Lu M, Ohba T, Kaneko K, Hata K, Yumura M, Iijima S, Komatsu H, Sakuma A, Kanoh H.

Materials (Basel). 2013 Feb 15;6(2):535-543. doi: 10.3390/ma6020535.

18.

Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect.

Xu M, Futaba DN, Yumura M, Hata K.

ACS Nano. 2012 Jul 24;6(7):5837-44. doi: 10.1021/nn300142j. Epub 2012 Jun 22.

PMID:
22703583
19.

Mutual exclusivity in the synthesis of high crystallinity and high yield single-walled carbon nanotubes.

Kimura H, Futaba DN, Yumura M, Hata K.

J Am Chem Soc. 2012 Jun 6;134(22):9219-24. doi: 10.1021/ja300769j. Epub 2012 May 29.

PMID:
22591264
20.

Mechanically durable and highly conductive elastomeric composites from long single-walled carbon nanotubes mimicking the chain structure of polymers.

Ata S, Kobashi K, Yumura M, Hata K.

Nano Lett. 2012 Jun 13;12(6):2710-6. doi: 10.1021/nl204221y. Epub 2012 May 7.

PMID:
22546049

Supplemental Content

Loading ...
Support Center