Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Mechanics of the Tricuspid Valve-From Clinical Diagnosis/Treatment, In-Vivo and In-Vitro Investigations, to Patient-Specific Biomechanical Modeling.

Lee CH, Laurence DW, Ross CJ, Kramer KE, Babu AR, Johnson EL, Hsu MC, Aggarwal A, Mir A, Burkhart HM, Towner RA, Baumwart R, Wu Y.

Bioengineering (Basel). 2019 May 22;6(2). pii: E47. doi: 10.3390/bioengineering6020047. Review.

2.

A contact formulation based on a volumetric potential: Application to isogeometric simulations of atrioventricular valves.

Kamensky D, Xu F, Lee CH, Yan J, Bazilevs Y, Hsu MC.

Comput Methods Appl Mech Eng. 2018 Mar 1;330:522-546. doi: 10.1016/j.cma.2017.11.007. Epub 2017 Nov 16.

3.

An anisotropic constitutive model for immersogeometric fluid-structure interaction analysis of bioprosthetic heart valves.

Wu MCH, Zakerzadeh R, Kamensky D, Kiendl J, Sacks MS, Hsu MC.

J Biomech. 2018 Jun 6;74:23-31. doi: 10.1016/j.jbiomech.2018.04.012. Epub 2018 Apr 12.

4.

Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling.

Kamensky D, Evans JA, Hsu MC, Bazilevs Y.

Comput Math Appl. 2017 Nov 1;74(9):2068-2088. doi: 10.1016/j.camwa.2017.07.006. Epub 2017 Jul 29.

5.

A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis.

Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJR, Sacks MS, Hsu MC.

Int J Numer Method Biomed Eng. 2018 Apr;34(4):e2938. doi: 10.1002/cnm.2938. Epub 2018 Jan 25.

6.

Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces.

Wang C, Xu F, Hsu MC, Krishnamurthy A.

Comput Aided Geom Des. 2017 Mar-Apr;52-53:190-204. doi: 10.1016/j.cagd.2017.03.002. Epub 2017 Mar 21.

7.

Computational methods for the aortic heart valve and its replacements.

Zakerzadeh R, Hsu MC, Sacks MS.

Expert Rev Med Devices. 2017 Nov;14(11):849-866. doi: 10.1080/17434440.2017.1389274. Epub 2017 Oct 23. Review.

8.

Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines.

Kamensky D, Hsu MC, Yu Y, Evans JA, Sacks MS, Hughes TJ.

Comput Methods Appl Mech Eng. 2017 Feb 1;314:408-472. doi: 10.1016/j.cma.2016.07.028. Epub 2016 Aug 4.

9.

Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models.

Hsu MC, Kamensky D, Xu F, Kiendl J, Wang C, Wu MC, Mineroff J, Reali A, Bazilevs Y, Sacks MS.

Comput Mech. 2015 Jun;55(6):1211-1225.

10.

Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation.

Hsu MC, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJ.

Comput Mech. 2014 Oct;54(4):1055-1071.

11.

An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves.

Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJ.

Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053.

12.

Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: design, synthesis, structural biology, and molecular docking studies.

Mahindroo N, Wang CC, Liao CC, Huang CF, Lu IL, Lien TW, Peng YH, Huang WJ, Lin YT, Hsu MC, Lin CH, Tsai CH, Hsu JT, Chen X, Lyu PC, Chao YS, Wu SY, Hsieh HP.

J Med Chem. 2006 Feb 9;49(3):1212-6.

PMID:
16451087

Supplemental Content

Loading ...
Support Center