Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 43

1.

The Loop of the TPR1 Subdomain of Phi29 DNA Polymerase Plays a Pivotal Role in Primer-Terminus Stabilization at the Polymerization Active Site.

Del Prado A, Santos E, Lázaro JM, Salas M, de Vega M.

Biomolecules. 2019 Oct 24;9(11). pii: E648. doi: 10.3390/biom9110648.

2.

An array of basic residues is essential for the nucleolytic activity of the PHP domain of bacterial/archaeal PolX DNA polymerases.

Rodríguez G, Martín MT, de Vega M.

Sci Rep. 2019 Jul 9;9(1):9947. doi: 10.1038/s41598-019-46349-8.

3.
4.

New insights into the coordination between the polymerization and 3'-5' exonuclease activities in ϕ29 DNA polymerase.

Del Prado A, Rodríguez I, Lázaro JM, Moreno-Morcillo M, de Vega M, Salas M.

Sci Rep. 2019 Jan 29;9(1):923. doi: 10.1038/s41598-018-37513-7.

5.

Noncatalytic aspartate at the exonuclease domain of proofreading DNA polymerases regulates both degradative and synthetic activities.

Del Prado A, Franco-Echevarría E, González B, Blanco L, Salas M, de Vega M.

Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2921-E2929. doi: 10.1073/pnas.1718787115. Epub 2018 Mar 12.

6.

Phaeocystis globosa Virus DNA Polymerase X: a "Swiss Army knife", Multifunctional DNA polymerase-lyase-ligase for Base Excision Repair.

Fernández-García JL, de Ory A, Brussaard CPD, de Vega M.

Sci Rep. 2017 Jul 31;7(1):6907. doi: 10.1038/s41598-017-07378-3.

7.

The anti/syn conformation of 8-oxo-7,8-dihydro-2'-deoxyguanosine is modulated by Bacillus subtilis PolX active site residues His255 and Asn263. Efficient processing of damaged 3'-ends.

Zafra O, Pérez de Ayala L, de Vega M.

DNA Repair (Amst). 2017 Apr;52:59-69. doi: 10.1016/j.dnarep.2017.02.008. Epub 2017 Feb 16.

8.

DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

Salas M, Holguera I, Redrejo-Rodríguez M, de Vega M.

Front Mol Biosci. 2016 Aug 5;3:37. doi: 10.3389/fmolb.2016.00037. eCollection 2016. Review.

9.

Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair.

de Ory A, Nagler K, Carrasco B, Raguse M, Zafra O, Moeller R, de Vega M.

Nucleic Acids Res. 2016 Feb 29;44(4):1833-44. doi: 10.1093/nar/gkw054. Epub 2016 Jan 29.

10.

Insights into the Determination of the Templating Nucleotide at the Initiation of φ29 DNA Replication.

del Prado A, Lázaro JM, Longás E, Villar L, de Vega M, Salas M.

J Biol Chem. 2015 Nov 6;290(45):27138-45. doi: 10.1074/jbc.M115.682278. Epub 2015 Sep 23.

11.

DNA polymerase from temperate phage Bam35 is endowed with processive polymerization and abasic sites translesion synthesis capacity.

Berjón-Otero M, Villar L, de Vega M, Salas M, Redrejo-Rodríguez M.

Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3476-84. doi: 10.1073/pnas.1510280112. Epub 2015 Jun 22.

12.

Efficient processing of abasic sites by bacterial nonhomologous end-joining Ku proteins.

de Ory A, Zafra O, de Vega M.

Nucleic Acids Res. 2014 Dec 1;42(21):13082-95. doi: 10.1093/nar/gku1029. Epub 2014 Oct 29.

13.

Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide.

Santos E, Lázaro JM, Pérez-Arnaiz P, Salas M, de Vega M.

J Biol Chem. 2014 Jan 31;289(5):2888-98. doi: 10.1074/jbc.M113.530980. Epub 2013 Dec 9.

14.

Dual role of φ29 DNA polymerase Lys529 in stabilisation of the DNA priming-terminus and the terminal protein-priming residue at the polymerisation site.

del Prado A, Lázaro JM, Villar L, Salas M, de Vega M.

PLoS One. 2013 Sep 4;8(9):e72765. doi: 10.1371/journal.pone.0072765. eCollection 2013.

15.

The minimal Bacillus subtilis nonhomologous end joining repair machinery.

de Vega M.

PLoS One. 2013 May 17;8(5):e64232. doi: 10.1371/journal.pone.0064232. Print 2013.

16.

The essential role of the 3' terminal template base in the first steps of protein-primed DNA replication.

Rodríguez I, Longás E, de Vega M, Salas M.

PLoS One. 2012;7(10):e48257. doi: 10.1371/journal.pone.0048257. Epub 2012 Oct 24.

17.

DNA stabilization at the Bacillus subtilis PolX core--a binding model to coordinate polymerase, AP-endonuclease and 3'-5' exonuclease activities.

Baños B, Villar L, Salas M, de Vega M.

Nucleic Acids Res. 2012 Oct;40(19):9750-62. doi: 10.1093/nar/gks702. Epub 2012 Jul 25.

18.

Involvement of residues of the 29 terminal protein intermediate and priming domains in the formation of a stable and functional heterodimer with the replicative DNA polymerase.

del Prado A, Villar L, de Vega M, Salas M.

Nucleic Acids Res. 2012 May;40(9):3886-97. doi: 10.1093/nar/gkr1283. Epub 2011 Dec 30.

19.

Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage Phi29.

Mencía M, Gella P, Camacho A, de Vega M, Salas M.

Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18655-60. doi: 10.1073/pnas.1114397108. Epub 2011 Nov 7.

20.

Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites.

Baños B, Villar L, Salas M, de Vega M.

Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19219-24. doi: 10.1073/pnas.1013603107. Epub 2010 Oct 25.

Supplemental Content

Loading ...
Support Center