Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 45

1.

On the Roles of Wheat Endosperm ADP-Glucose Pyrophosphorylase Subunits.

Ferrero DML, Asencion Diez MD, Kuhn ML, Falaschetti CA, Piattoni CV, Iglesias AA, Ballicora MA.

Front Plant Sci. 2018 Oct 16;9:1498. doi: 10.3389/fpls.2018.01498. eCollection 2018.

2.

Resurrecting the Regulatory Properties of the Ostreococcus tauri ADP-Glucose Pyrophosphorylase Large Subunit.

Figueroa CM, Kuhn ML, Hill BL, Iglesias AA, Ballicora MA.

Front Plant Sci. 2018 Oct 30;9:1564. doi: 10.3389/fpls.2018.01564. eCollection 2018.

3.

Structural analysis reveals a pyruvate-binding activator site in the Agrobacterium tumefaciens ADP-glucose pyrophosphorylase.

Hill BL, Mascarenhas R, Patel HP, Asencion Diez MD, Wu R, Iglesias AA, Liu D, Ballicora MA.

J Biol Chem. 2019 Jan 25;294(4):1338-1348. doi: 10.1074/jbc.RA118.004246. Epub 2018 Nov 6.

PMID:
30401744
4.

Regulatory Properties of the ADP-Glucose Pyrophosphorylase from the Clostridial Firmicutes Member Ruminococcus albus.

Cereijo AE, Asencion Diez MD, Ballicora MA, Iglesias AA.

J Bacteriol. 2018 Aug 10;200(17). pii: e00172-18. doi: 10.1128/JB.00172-18. Print 2018 Sep 1.

5.

Practical spectrophotometric assay for the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase, a potential antibiotic target.

Heath TK, Lutz MR Jr, Reidl CT, Guzman ER, Herbert CA, Nocek BP, Holz RC, Olsen KW, Ballicora MA, Becker DP.

PLoS One. 2018 Apr 26;13(4):e0196010. doi: 10.1371/journal.pone.0196010. eCollection 2018.

6.

On the stability of nucleoside diphosphate glucose metabolites: implications for studies of plant carbohydrate metabolism.

Hill BL, Figueroa CM, Asencion Diez MD, Lunn JE, Iglesias AA, Ballicora MA.

J Exp Bot. 2017 Jun 15;68(13):3331-3337. doi: 10.1093/jxb/erx190.

7.

Allosteric Control of Substrate Specificity of the Escherichia coli ADP-Glucose Pyrophosphorylase.

Ebrecht AC, Solamen L, Hill BL, Iglesias AA, Olsen KW, Ballicora MA.

Front Chem. 2017 Jun 19;5:41. doi: 10.3389/fchem.2017.00041. eCollection 2017.

8.

Identification and characterization of a novel starch branching enzyme from the picoalgae Ostreococcus tauri.

Hedin N, Barchiesi J, Gomez-Casati DF, Iglesias AA, Ballicora MA, Busi MV.

Arch Biochem Biophys. 2017 Mar 15;618:52-61. doi: 10.1016/j.abb.2017.02.005. Epub 2017 Feb 21.

PMID:
28235467
9.

Monofluorophosphate Blocks Internal Polysaccharide Synthesis in Streptococcus mutans.

Demonte AM, Asencion Diez MD, Naleway C, Iglesias AA, Ballicora MA.

PLoS One. 2017 Jan 26;12(1):e0170483. doi: 10.1371/journal.pone.0170483. eCollection 2017.

10.

Identification of a novel starch synthase III from the picoalgae Ostreococcus tauri.

Barchiesi J, Hedin N, Iglesias AA, Gomez-Casati DF, Ballicora MA, Busi MV.

Biochimie. 2017 Feb;133:37-44. doi: 10.1016/j.biochi.2016.12.003. Epub 2016 Dec 19.

PMID:
28003125
11.

On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli.

Ebrecht AC, Orlof AM, Sasoni N, Figueroa CM, Iglesias AA, Ballicora MA.

Front Microbiol. 2015 Nov 13;6:1253. doi: 10.3389/fmicb.2015.01253. eCollection 2015.

12.

Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms.

Barchiesi J, Hedin N, Gomez-Casati DF, Ballicora MA, Busi MV.

BMC Res Notes. 2015 Oct 28;8:613. doi: 10.1186/s13104-015-1598-6.

13.

The Crystal Structure of Nitrosomonas europaea Sucrose Synthase Reveals Critical Conformational Changes and Insights into Sucrose Metabolism in Prokaryotes.

Wu R, Asención Diez MD, Figueroa CM, Machtey M, Iglesias AA, Ballicora MA, Liu D.

J Bacteriol. 2015 Sep;197(17):2734-46. doi: 10.1128/JB.00110-15. Epub 2015 May 26.

14.

A novel polyamine allosteric site of SpeG from Vibrio cholerae is revealed by its dodecameric structure.

Filippova EV, Kuhn ML, Osipiuk J, Kiryukhina O, Joachimiak A, Ballicora MA, Anderson WF.

J Mol Biol. 2015 Mar 27;427(6 Pt B):1316-1334. doi: 10.1016/j.jmb.2015.01.009. Epub 2015 Jan 23.

15.

Conserved residues of the Pro103-Arg115 loop are involved in triggering the allosteric response of the Escherichia coli ADP-glucose pyrophosphorylase.

Hill BL, Wong J, May BM, Huerta FB, Manley TE, Sullivan PR, Olsen KW, Ballicora MA.

Protein Sci. 2015 May;24(5):714-28. doi: 10.1002/pro.2644. Epub 2015 Mar 12.

16.

A novel dual allosteric activation mechanism of Escherichia coli ADP-glucose pyrophosphorylase: the role of pyruvate.

Asención Diez MD, Aleanzi MC, Iglesias AA, Ballicora MA.

PLoS One. 2014 Aug 7;9(8):e103888. doi: 10.1371/journal.pone.0103888. eCollection 2014.

17.

The ADP-glucose pyrophosphorylase from Streptococcus mutans provides evidence for the regulation of polysaccharide biosynthesis in Firmicutes.

Asención Diez MD, Demonte AM, Guerrero SA, Ballicora MA, Iglesias AA.

Mol Microbiol. 2013 Dec;90(5):1011-27. doi: 10.1111/mmi.12413. Epub 2013 Oct 29.

18.

Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase.

Figueroa CM, Kuhn ML, Falaschetti CA, Solamen L, Olsen KW, Ballicora MA, Iglesias AA.

PLoS One. 2013 Jun 24;8(6):e66824. doi: 10.1371/journal.pone.0066824. Print 2013.

19.

A Chimeric UDP-glucose pyrophosphorylase produced by protein engineering exhibits sensitivity to allosteric regulators.

Diez MD, Ebrecht AC, Martínez LI, Aleanzi MC, Guerrero SA, Ballícora MA, Iglesias AA.

Int J Mol Sci. 2013 May 6;14(5):9703-21. doi: 10.3390/ijms14059703.

20.

The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms.

Kuhn ML, Figueroa CM, Iglesias AA, Ballicora MA.

BMC Evol Biol. 2013 Feb 21;13:51. doi: 10.1186/1471-2148-13-51.

Supplemental Content

Loading ...
Support Center