Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 31

1.

Epithelial Mesenchymal Transition in Respiratory Disease: Fact or Fiction.

Knight DA, Grainge CL, Stick SM, Kicic A, Schuliga M.

Chest. 2020 Jan 15. pii: S0012-3692(20)30013-1. doi: 10.1016/j.chest.2019.12.014. [Epub ahead of print] No abstract available.

PMID:
31952949
2.

Modeling the impact of low-dose particulate matter on lung health.

Schuliga M, Bartlett N.

Am J Physiol Lung Cell Mol Physiol. 2019 Nov 1;317(5):L550-L553. doi: 10.1152/ajplung.00343.2019. Epub 2019 Sep 18. No abstract available.

PMID:
31530166
3.

The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis.

Murtha LA, Morten M, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Ngo DT, Sverdlov AL, Knight DA, Boyle AJ.

Aging Dis. 2019 Apr 1;10(2):419-428. doi: 10.14336/AD.2018.0601. eCollection 2019 Apr.

4.

STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts.

Waters DW, Blokland KEC, Pathinayake PS, Wei L, Schuliga M, Jaffar J, Westall GP, Hansbro PM, Prele CM, Mutsaers SE, Bartlett NW, Burgess JK, Grainge CL, Knight DA.

Am J Respir Cell Mol Biol. 2019 Jul;61(1):61-73. doi: 10.1165/rcmb.2018-0328OC.

PMID:
30608861
5.

Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts.

Schuliga M, Pechkovsky DV, Read J, Waters DW, Blokland KEC, Reid AT, Hogaboam CM, Khalil N, Burgess JK, Prêle CM, Mutsaers SE, Jaffar J, Westall G, Grainge C, Knight DA.

J Cell Mol Med. 2018 Dec;22(12):5847-5861. doi: 10.1111/jcmm.13855. Epub 2018 Sep 26.

6.

Casein Kinase 1δ/ε Inhibitor, PF670462 Attenuates the Fibrogenic Effects of Transforming Growth Factor-β in Pulmonary Fibrosis.

Keenan CR, Langenbach SY, Jativa F, Harris T, Li M, Chen Q, Xia Y, Gao B, Schuliga MJ, Jaffar J, Prodanovic D, Tu Y, Berhan A, Lee PVS, Westall GP, Stewart AG.

Front Pharmacol. 2018 Jul 10;9:738. doi: 10.3389/fphar.2018.00738. eCollection 2018.

7.

Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis.

Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA.

Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L162-L172. doi: 10.1152/ajplung.00037.2018. Epub 2018 Apr 26. Review.

8.

The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis.

Schuliga M, Grainge C, Westall G, Knight D.

Int J Biochem Cell Biol. 2018 Apr;97:108-117. doi: 10.1016/j.biocel.2018.02.016. Epub 2018 Feb 21. Review.

PMID:
29474926
9.

The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis.

Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ.

Front Physiol. 2017 Oct 12;8:777. doi: 10.3389/fphys.2017.00777. eCollection 2017. Review.

10.

Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity.

Schuliga M, Jaffar J, Berhan A, Langenbach S, Harris T, Waters D, Lee PVS, Grainge C, Westall G, Knight D, Stewart AG.

Am J Physiol Lung Cell Mol Physiol. 2017 May 1;312(5):L772-L782. doi: 10.1152/ajplung.00553.2016. Epub 2017 Mar 10.

11.

The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF.

Schuliga M, Jaffar J, Harris T, Knight DA, Westall G, Stewart AG.

Sci Rep. 2017 Jan 31;7:41770. doi: 10.1038/srep41770.

12.

NF-kappaB Signaling in Chronic Inflammatory Airway Disease.

Schuliga M.

Biomolecules. 2015 Jun 26;5(3):1266-83. doi: 10.3390/biom5031266. Review.

13.

The Coagulant Factor Xa Induces Protease-Activated Receptor-1 and Annexin A2-Dependent Airway Smooth Muscle Cytokine Production and Cell Proliferation.

Schuliga M, Royce SG, Langenbach S, Berhan A, Harris T, Keenan CR, Stewart AG.

Am J Respir Cell Mol Biol. 2016 Feb;54(2):200-9. doi: 10.1165/rcmb.2014-0419OC.

PMID:
26120939
14.

The inflammatory actions of coagulant and fibrinolytic proteases in disease.

Schuliga M.

Mediators Inflamm. 2015;2015:437695. doi: 10.1155/2015/437695. Epub 2015 Mar 24. Review.

15.

Pro-inflammatory mediators increase levels of the noncoding RNA GAS5 in airway smooth muscle and epithelial cells.

Keenan CR, Schuliga MJ, Stewart AG.

Can J Physiol Pharmacol. 2015 Mar;93(3):203-6. doi: 10.1139/cjpp-2014-0391. Epub 2014 Dec 11.

PMID:
25615620
16.

Regulation of pulmonary inflammation by mesenchymal cells.

Alkhouri H, Poppinga WJ, Tania NP, Ammit A, Schuliga M.

Pulm Pharmacol Ther. 2014 Dec;29(2):156-65. doi: 10.1016/j.pupt.2014.03.001. Epub 2014 Mar 20. Review.

PMID:
24657485
17.

The plasminogen activation system: new targets in lung inflammation and remodeling.

Schuliga M, Westall G, Xia Y, Stewart AG.

Curr Opin Pharmacol. 2013 Jun;13(3):386-93. doi: 10.1016/j.coph.2013.05.014. Epub 2013 Jun 2. Review.

PMID:
23735578
18.

Plasminogen-stimulated inflammatory cytokine production by airway smooth muscle cells is regulated by annexin A2.

Schuliga M, Langenbach S, Xia YC, Qin C, Mok JS, Harris T, Mackay GA, Medcalf RL, Stewart AG.

Am J Respir Cell Mol Biol. 2013 Nov;49(5):751-8. doi: 10.1165/rcmb.2012-0404OC.

PMID:
23721211
19.

Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2.

Schuliga M, Javeed A, Harris T, Xia Y, Qin C, Wang Z, Zhang X, Lee PV, Camoretti-Mercado B, Stewart AG.

Am J Respir Cell Mol Biol. 2013 Mar;48(3):346-53. doi: 10.1165/rcmb.2012-0151OC. Epub 2012 Dec 13.

20.

Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2.

Khau T, Langenbach SY, Schuliga M, Harris T, Johnstone CN, Anderson RL, Stewart AG.

FASEB J. 2011 Feb;25(2):483-96. doi: 10.1096/fj.09-154096. Epub 2010 Oct 7.

PMID:
20930115

Supplemental Content

Loading ...
Support Center