Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 18

1.

Cephamycins inhibit pathogen sporulation and effectively treat recurrent Clostridioides difficile infection.

Srikhanta YN, Hutton ML, Awad MM, Drinkwater N, Singleton J, Day SL, Cunningham BA, McGowan S, Lyras D.

Nat Microbiol. 2019 Aug 12. doi: 10.1038/s41564-019-0519-1. [Epub ahead of print]

PMID:
31406331
2.

Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles targeting Clostridioides (Clostridium) difficile: Synthesis, antibacterial evaluation and an in vivo C. difficile infection model.

Tague AJ, Putsathit P, Hutton ML, Hammer KA, Wales SM, Knight DR, Riley TV, Lyras D, Keller PA, Pyne SG.

Eur J Med Chem. 2019 May 15;170:203-224. doi: 10.1016/j.ejmech.2019.02.068. Epub 2019 Mar 1.

PMID:
30901686
3.

A series of three cases of severe Clostridium difficile infection in Australia associated with a binary toxin producing clade 2 ribotype 251 strain.

Wehrhahn MC, Keighley C, Kurtovic J, Knight DR, Hong S, Hutton ML, Lyras D, Wang Q, Leong R, Borody T, Edye M, Riley TV.

Anaerobe. 2019 Feb;55:117-123. doi: 10.1016/j.anaerobe.2018.11.009. Epub 2018 Nov 27.

PMID:
30500477
4.

Hyperimmune bovine colostrum reduces gastrointestinal carriage of uropathogenic Escherichia coli.

Larcombe S, Hutton ML, Lyras D.

Hum Vaccin Immunother. 2019;15(2):508-513. doi: 10.1080/21645515.2018.1528836. Epub 2018 Oct 31.

PMID:
30277834
5.

Diverse bacterial species contribute to antibiotic-associated diarrhoea and gastrointestinal damage.

Larcombe S, Hutton ML, Riley TV, Abud HE, Lyras D.

J Infect. 2018 Nov;77(5):417-426. doi: 10.1016/j.jinf.2018.06.006. Epub 2018 Jun 30.

PMID:
29964142
6.

Intestinal Colonization Traits of Pandemic Multidrug-Resistant Escherichia coli ST131.

Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, Schembri MA, Totsika M.

J Infect Dis. 2018 Aug 14;218(6):979-990. doi: 10.1093/infdis/jiy031.

7.

A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization.

Hutton ML, D'Costa K, Rossiter AE, Wang L, Turner L, Steer DL, Masters SL, Croker BA, Kaparakis-Liaskos M, Ferrero RL.

Front Cell Infect Microbiol. 2017 Jun 6;7:219. doi: 10.3389/fcimb.2017.00219. eCollection 2017.

8.

Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative.

Hutton ML, Cunningham BA, Mackin KE, Lyon SA, James ML, Rood JI, Lyras D.

Sci Rep. 2017 Jun 16;7(1):3665. doi: 10.1038/s41598-017-03982-5.

9.

Options for improving effectiveness of rotavirus vaccines in developing countries.

Tissera MS, Cowley D, Bogdanovic-Sakran N, Hutton ML, Lyras D, Kirkwood CD, Buttery JP.

Hum Vaccin Immunother. 2017 Apr 3;13(4):921-927. doi: 10.1080/21645515.2016.1252493. Epub 2016 Nov 11. Review.

10.

CdtR Regulates TcdA and TcdB Production in Clostridium difficile.

Lyon SA, Hutton ML, Rood JI, Cheung JK, Lyras D.

PLoS Pathog. 2016 Jul 14;12(7):e1005758. doi: 10.1371/journal.ppat.1005758. eCollection 2016 Jul.

11.

Involvement of Bacteria Other Than Clostridium difficile in Antibiotic-Associated Diarrhoea.

Larcombe S, Hutton ML, Lyras D.

Trends Microbiol. 2016 Jun;24(6):463-476. doi: 10.1016/j.tim.2016.02.001. Epub 2016 Feb 17. Review.

PMID:
26897710
12.

Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance.

Johanesen PA, Mackin KE, Hutton ML, Awad MM, Larcombe S, Amy JM, Lyras D.

Genes (Basel). 2015 Dec 21;6(4):1347-60. doi: 10.3390/genes6041347. Review.

13.

Increased Outer Membrane Vesicle Formation in a Helicobacter pylori tolB Mutant.

Turner L, Praszkier J, Hutton ML, Steer D, Ramm G, Kaparakis-Liaskos M, Ferrero RL.

Helicobacter. 2015 Aug;20(4):269-83. doi: 10.1111/hel.12196. Epub 2015 Feb 9.

PMID:
25669590
14.

Small animal models for the study of Clostridium difficile disease pathogenesis.

Hutton ML, Mackin KE, Chakravorty A, Lyras D.

FEMS Microbiol Lett. 2014 Mar;352(2):140-9. doi: 10.1111/1574-6968.12367. Epub 2014 Jan 7. Review.

15.

A novel NOD1- and CagA-independent pathway of interleukin-8 induction mediated by the Helicobacter pylori type IV secretion system.

Gorrell RJ, Guan J, Xin Y, Tafreshi MA, Hutton ML, McGuckin MA, Ferrero RL, Kwok T.

Cell Microbiol. 2013 Apr;15(4):554-70. doi: 10.1111/cmi.12055. Epub 2012 Nov 21.

PMID:
23107019
16.

The use of AlbuMAX II(®) as a blood or serum alternative for the culture of Helicobacter pylori.

Hutton ML, Kaparakis-Liaskos M, Ferrero RL.

Helicobacter. 2012 Feb;17(1):68-76. doi: 10.1111/j.1523-5378.2011.00914.x.

PMID:
22221619
17.

Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-kappaB-dependent responses and peptidoglycan delivery in epithelial cells.

Hutton ML, Kaparakis-Liaskos M, Turner L, Cardona A, Kwok T, Ferrero RL.

Infect Immun. 2010 Nov;78(11):4523-31. doi: 10.1128/IAI.00439-10. Epub 2010 Aug 16.

18.

Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells.

Kaparakis M, Turnbull L, Carneiro L, Firth S, Coleman HA, Parkington HC, Le Bourhis L, Karrar A, Viala J, Mak J, Hutton ML, Davies JK, Crack PJ, Hertzog PJ, Philpott DJ, Girardin SE, Whitchurch CB, Ferrero RL.

Cell Microbiol. 2010 Mar;12(3):372-85. doi: 10.1111/j.1462-5822.2009.01404.x. Epub 2009 Nov 2.

PMID:
19888989

Supplemental Content

Loading ...
Support Center