Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 51

1.

Photosystem II antenna complexes CP26 and CP29 are essential for non-photochemical quenching in Chlamydomonas reinhardtii.

Cazzaniga S, Kim M, Bellamoli F, Jeong J, Lee S, Perozeni F, Pompa A, Jin E, Ballottari M.

Plant Cell Environ. 2019 Nov 14. doi: 10.1111/pce.13680. [Epub ahead of print]

PMID:
31724187
2.

Retraction Note: Increased biomass productivity in green algae by tuning non-photochemical quenching.

Berteotti S, Ballottari M, Bassi R.

Sci Rep. 2019 Sep 6;9(1):13026. doi: 10.1038/s41598-019-48482-w.

3.

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Cecchin M, Marcolungo L, Rossato M, Girolomoni L, Cosentino E, Cuine S, Li-Beisson Y, Delledonne M, Ballottari M.

Plant J. 2019 Aug 22. doi: 10.1111/tpj.14508. [Epub ahead of print]

PMID:
31437318
4.

Encapsulation of Photosystem I in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis.

Cherubin A, Destefanis L, Bovi M, Perozeni F, Bargigia I, de la Cruz Valbuena G, D'Andrea C, Romeo A, Ballottari M, Perduca M.

ACS Sustain Chem Eng. 2019 Jun 17;7(12):10435-10444. doi: 10.1021/acssuschemeng.9b00738. Epub 2019 May 16.

5.

Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii.

de la Cruz Valbuena G, V A Camargo F, Borrego-Varillas R, Perozeni F, D'Andrea C, Ballottari M, Cerullo G.

J Phys Chem Lett. 2019 May 16;10(10):2500-2505. doi: 10.1021/acs.jpclett.9b01184. Epub 2019 May 3.

6.

In vitro and in vivo investigation of chlorophyll binding sites involved in non-photochemical quenching in Chlamydomonas reinhardtii.

Perozeni F, Cazzaniga S, Ballottari M.

Plant Cell Environ. 2019 Aug;42(8):2522-2535. doi: 10.1111/pce.13566. Epub 2019 May 9.

7.

LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii.

Girolomoni L, Cazzaniga S, Pinnola A, Perozeni F, Ballottari M, Bassi R.

Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4212-4217. doi: 10.1073/pnas.1809812116. Epub 2019 Feb 19.

8.

Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach.

Perri A, Gaida JH, Farina A, Preda F, Viola D, Ballottari M, Hauer J, De Silvestri S, D'Andrea C, Cerullo G, Polli D.

Opt Express. 2018 Feb 5;26(3):2270-2279. doi: 10.1364/OE.26.002270.

9.

LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae.

Perozeni F, Stella GR, Ballottari M.

Int J Mol Sci. 2018 Jan 5;19(1). pii: E155. doi: 10.3390/ijms19010155.

10.

Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in Photosystems.

Mascia F, Girolomoni L, Alcocer MJP, Bargigia I, Perozeni F, Cazzaniga S, Cerullo G, D'Andrea C, Ballottari M.

Sci Rep. 2017 Nov 24;7(1):16319. doi: 10.1038/s41598-017-16641-6.

11.

Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH.

Pinnola A, Ballottari M, Bargigia I, Alcocer M, D'Andrea C, Cerullo G, Bassi R.

Sci Rep. 2017 Sep 11;7(1):11158. doi: 10.1038/s41598-017-11101-7.

12.

Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas.

Uhmeyer A, Cecchin M, Ballottari M, Wobbe L.

Plant Physiol. 2017 Jul;174(3):1399-1419. doi: 10.1104/pp.16.00946. Epub 2017 May 12.

13.

The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii.

Girolomoni L, Ferrante P, Berteotti S, Giuliano G, Bassi R, Ballottari M.

J Exp Bot. 2017 Jan 1;68(3):627-641. doi: 10.1093/jxb/erw462.

14.

Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens.

Pinnola A, Staleva-Musto H, Capaldi S, Ballottari M, Bassi R, Polívka T.

Biochim Biophys Acta. 2016 Dec;1857(12):1870-1878. doi: 10.1016/j.bbabio.2016.09.001. Epub 2016 Sep 7.

15.

Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste.

Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M.

Int J Mol Sci. 2016 Oct 10;17(10). pii: E1692.

16.

Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy.

Lewis NHC, Gruenke NL, Oliver TAA, Ballottari M, Bassi R, Fleming GR.

J Phys Chem Lett. 2016 Oct 20;7(20):4197-4206. doi: 10.1021/acs.jpclett.6b02280. Epub 2016 Oct 10.

17.

LHCII can substitute for LHCI as an antenna for photosystem I but with reduced light-harvesting capacity.

Bressan M, Dall'Osto L, Bargigia I, Alcocer MJ, Viola D, Cerullo G, D'Andrea C, Bassi R, Ballottari M.

Nat Plants. 2016 Aug 26;2:16131. doi: 10.1038/nplants.2016.131.

PMID:
27564313
18.

Increased biomass productivity in green algae by tuning non-photochemical quenching.

Berteotti S, Ballottari M, Bassi R.

Sci Rep. 2016 Feb 18;6:21339. doi: 10.1038/srep21339. Retraction in: Sci Rep. 2019 Sep 6;9(1):13026.

19.

Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii.

Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK.

J Biol Chem. 2016 Apr 1;291(14):7334-46. doi: 10.1074/jbc.M115.704601. Epub 2016 Jan 27.

20.

High light-dependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching.

Betterle N, Ballottari M, Baginsky S, Bassi R.

Plant Physiol. 2015 Feb;167(2):457-71. doi: 10.1104/pp.114.252379. Epub 2014 Dec 10.

Supplemental Content

Loading ...
Support Center