Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 81

1.

Converting bleomycin into a prodrug that undergoes spontaneous reactivation under physiological conditions.

Cooper I, Atrakchi D, Walker MD, Horovitz A, Fridkin M, Shechter Y.

Toxicol Appl Pharmacol. 2019 Dec 1;384:114782. doi: 10.1016/j.taap.2019.114782. Epub 2019 Oct 23.

PMID:
31655077
2.

Helminth-Based Product and the Microbiome of Mice with Lupus.

Neuman H, Mor H, Bashi T, Givol O, Watad A, Shemer A, Volkov A, Barshack I, Fridkin M, Blank M, Shoenfeld Y, Koren O.

mSystems. 2019 Feb 19;4(1). pii: e00160-18. doi: 10.1128/mSystems.00160-18. eCollection 2019 Jan-Feb.

3.

The therapeutic potential of tuftsin-phosphorylcholine in giant cell arteritis.

Croci S, Bonacini M, Muratore F, Caruso A, Fontana A, Boiardi L, Soriano A, Cavazza A, Cimino L, Belloni L, Perry O, Fridkin M, Parmeggiani M, Blank M, Shoenfeld Y, Salvarani C.

J Autoimmun. 2019 Mar;98:113-121. doi: 10.1016/j.jaut.2019.01.002. Epub 2019 Jan 10.

PMID:
30638709
4.

Helminths-based bi-functional molecule, tuftsin-phosphorylcholine (TPC), ameliorates an established murine arthritis.

Blank M, Bashi T, Lachnish J, Ben-Ami-Shor D, Shovman O, Fridkin M, Eisenstein M, Volkov A, Barshack I, Shoenfeld Y.

PLoS One. 2018 Aug 8;13(8):e0200615. doi: 10.1371/journal.pone.0200615. eCollection 2018.

5.

Tuftsin-Phosphorylcholine Maintains Normal Gut Microbiota in Collagen Induced Arthritic Mice.

Ben-Amram H, Bashi T, Werbner N, Neuman H, Fridkin M, Blank M, Shoenfeld Y, Koren O.

Front Microbiol. 2017 Jul 10;8:1222. doi: 10.3389/fmicb.2017.01222. eCollection 2017.

6.
7.

Successful modulation of murine lupus nephritis with tuftsin-phosphorylcholine.

Bashi T, Blank M, Ben-Ami Shor D, Fridkin M, Versini M, Gendelman O, Volkov A, Barshak I, Shoenfeld Y.

J Autoimmun. 2015 May;59:1-7. doi: 10.1016/j.jaut.2015.03.001. Epub 2015 Apr 10.

PMID:
25864802
8.

New approaches to treating Alzheimer's disease.

Zheng H, Fridkin M, Youdim M.

Perspect Medicin Chem. 2015 Feb 9;7:1-8. doi: 10.4137/PMC.S13210. eCollection 2015.

9.

Combined local blood-brain barrier opening and systemic methotrexate for the treatment of brain tumors.

Cooper I, Last D, Guez D, Sharabi S, Elhaik Goldman S, Lubitz I, Daniels D, Salomon S, Tamar G, Tamir T, Mardor R, Fridkin M, Shechter Y, Mardor Y.

J Cereb Blood Flow Metab. 2015 Jun;35(6):967-76. doi: 10.1038/jcbfm.2015.6. Epub 2015 Feb 11.

10.

Phosphorylcholine-tuftsin compound prevents development of dextransulfate-sodium-salt induced murine colitis: implications for the treatment of human inflammatory bowel disease.

Ben-Ami Shor D, Bashi T, Lachnish J, Fridkin M, Bizzaro G, Barshak I, Blank M, Shoenfeld Y.

J Autoimmun. 2015 Jan;56:111-7. doi: 10.1016/j.jaut.2014.11.001. Epub 2014 Dec 3.

PMID:
25479760
11.

From single target to multitarget/network therapeutics in Alzheimer's therapy.

Zheng H, Fridkin M, Youdim M.

Pharmaceuticals (Basel). 2014 Jan 23;7(2):113-35. doi: 10.3390/ph7020113.

12.

Peptide derived from HIV-1 TAT protein destabilizes a monolayer of endothelial cells in an in vitro model of the blood-brain barrier and allows permeation of high molecular weight proteins.

Cooper I, Sasson K, Teichberg VI, Schnaider-Beeri M, Fridkin M, Shechter Y.

J Biol Chem. 2012 Dec 28;287(53):44676-83. doi: 10.1074/jbc.M112.395384. Epub 2012 Nov 13.

13.

Establishing the principle of reversibility in peptide/protein and small-molecule therapy.

Shechter Y, Sasson K, Marcus Y, Rubinraut S, Lev-Goldman V, Fridkin M.

Ther Deliv. 2012 Jan;3(1):17-23. Review.

PMID:
22833930
14.

Newly designed modifier prolongs the action of short-lived peptides and proteins by allowing their binding to serum albumin.

Shechter Y, Sasson K, Lev-Goldman V, Rubinraut S, Rubinstein M, Fridkin M.

Bioconjug Chem. 2012 Aug 15;23(8):1577-86. doi: 10.1021/bc3000854. Epub 2012 Jul 17.

PMID:
22759320
15.

Novel chelators targeting cell cycle arrest, acetylcholinesterase, and monoamine oxidase for Alzheimer's therapy.

Zheng H, Fridkin M, Youdim MB.

Curr Drug Targets. 2012 Jul;13(8):1089-106. Review.

PMID:
22676912
16.

From anti-Parkinson's drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer's disease.

Zheng H, Amit T, Bar-Am O, Fridkin M, Youdim MB, Mandel SA.

J Alzheimers Dis. 2012;30(1):1-16. doi: 10.3233/JAD-2012-120013. Review.

PMID:
22387411
17.

β2-Glycoprotein-I based peptide regulate endothelial-cells tissue-factor expression via negative regulation of pGSK3β expression and reduces experimental-antiphospholipid-syndrome.

Blank M, Baraam L, Eisenstein M, Fridkin M, Dardik R, Heldman Y, Katchalski-Katzir E, Shoenfeld Y.

J Autoimmun. 2011 Aug;37(1):8-17. doi: 10.1016/j.jaut.2011.02.008. Epub 2011 Apr 27.

PMID:
21524885
18.

Selective acetylcholinesterase inhibitor activated by acetylcholinesterase releases an active chelator with neurorescuing and anti-amyloid activities.

Zheng H, Youdim MB, Fridkin M.

ACS Chem Neurosci. 2010 Nov 17;1(11):737-46. doi: 10.1021/cn100069c. Epub 2010 Oct 4.

19.

Site-activated chelators derived from anti-Parkinson drug rasagiline as a potential safer and more effective approach to the treatment of Alzheimer's disease.

Zheng H, Fridkin M, Youdim MB.

Neurochem Res. 2010 Dec;35(12):2117-23. doi: 10.1007/s11064-010-0293-1. Epub 2010 Oct 28.

PMID:
20981484
20.

Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer's therapy.

Zheng H, Youdim MB, Fridkin M.

ACS Chem Biol. 2010 Jun 18;5(6):603-10. doi: 10.1021/cb900264w.

PMID:
20455574

Supplemental Content

Loading ...
Support Center