Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 44

1.

The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer's disease in rodents.

Griebel G, Stemmelin J, Lopez-Grancha M, Boulay D, Boquet G, Slowinski F, Pichat P, Beeské S, Tanaka S, Mori A, Fujimura M, Eguchi J.

Sci Rep. 2019 Dec 2;9(1):18045. doi: 10.1038/s41598-019-54557-5.

2.

Local Vibration Stimuli Induce Mechanical Stress-Induced Factors and Facilitate Recovery From Immobilization-Induced Oxidative Myofiber Atrophy in Rats.

Usuki F, Fujimura M, Nakamura A, Nakano J, Okita M, Higuchi I.

Front Physiol. 2019 Jun 20;10:759. doi: 10.3389/fphys.2019.00759. eCollection 2019.

3.

Induction of chemokine CCL3 by NF-κB reduces methylmercury toxicity in C17.2 mouse neural stem cells.

Takahashi T, Kim MS, Iwai-Shimada M, Hoshi T, Fujimura M, Toyama T, Fujiwara Y, Naganuma A, Hwang GW.

Environ Toxicol Pharmacol. 2019 Oct;71:103216. doi: 10.1016/j.etap.2019.103216. Epub 2019 Jun 24.

PMID:
31260942
4.

Environmental stresses suppress nonsense-mediated mRNA decay (NMD) and affect cells by stabilizing NMD-targeted gene expression.

Usuki F, Yamashita A, Fujimura M.

Sci Rep. 2019 Feb 4;9(1):1279. doi: 10.1038/s41598-018-38015-2.

5.
6.

A likely placental barrier against methylmercury in pregnant rats exposed to fish-containing diets.

Cambier S, Fujimura M, Bourdineaud JP.

Food Chem Toxicol. 2018 Dec;122:11-20. doi: 10.1016/j.fct.2018.09.066. Epub 2018 Sep 29.

PMID:
30273633
7.

Chemokine CCL4 Induced in Mouse Brain Has a Protective Role against Methylmercury Toxicity.

Takahashi T, Kim MS, Iwai-Shimada M, Fujimura M, Toyama T, Naganuma A, Hwang GW.

Toxics. 2018 Jul 7;6(3). pii: E36. doi: 10.3390/toxics6030036.

8.

Methylmercury induces oxidative stress and subsequent neural hyperactivity leading to cell death through the p38 MAPK-CREB pathway in differentiated SH-SY5Y cells.

Fujimura M, Usuki F.

Neurotoxicology. 2018 Jul;67:226-233. doi: 10.1016/j.neuro.2018.06.008. Epub 2018 Jun 18.

PMID:
29913201
9.

In situ different antioxidative systems contribute to the site-specific methylmercury neurotoxicity in mice.

Fujimura M, Usuki F.

Toxicology. 2017 Dec 1;392:55-63. doi: 10.1016/j.tox.2017.10.004. Epub 2017 Oct 13.

PMID:
29030019
10.

Endoplasmic reticulum stress preconditioning modifies intracellular mercury content by upregulating membrane transporters.

Usuki F, Fujimura M, Yamashita A.

Sci Rep. 2017 Sep 28;7(1):12390. doi: 10.1038/s41598-017-09435-3.

11.

Modulation of Unfolded Protein Response by Methylmercury.

Hiraoka H, Nakahara K, Kaneko Y, Akiyama S, Okuda K, Iwawaki T, Fujimura M, Kumagai Y, Takasugi N, Uehara T.

Biol Pharm Bull. 2017;40(9):1595-1598. doi: 10.1248/bpb.b17-00359.

12.

Discovery of novel 2-(3-phenylpiperazin-1-yl)-pyrimidin-4-ones as glycogen synthase kinase-3β inhibitors.

Usui Y, Uehara F, Hiki S, Watanabe K, Tanaka H, Shouda A, Yokoshima S, Aritomo K, Adachi T, Fukunaga K, Sunada S, Nabeno M, Saito KI, Eguchi JI, Yamagami K, Asano S, Tanaka S, Yuki S, Yoshii N, Fujimura M, Horikawa T.

Bioorg Med Chem Lett. 2017 Aug 15;27(16):3726-3732. doi: 10.1016/j.bmcl.2017.06.078. Epub 2017 Jul 5.

PMID:
28712708
13.

Site-specific neural hyperactivity via the activation of MAPK and PKA/CREB pathways triggers neuronal degeneration in methylmercury-intoxicated mice.

Fujimura M, Usuki F.

Toxicol Lett. 2017 Apr 5;271:66-73. doi: 10.1016/j.toxlet.2017.03.001. Epub 2017 Mar 4.

PMID:
28267559
14.

Methylmercury Causes Blood-Brain Barrier Damage in Rats via Upregulation of Vascular Endothelial Growth Factor Expression.

Takahashi T, Fujimura M, Koyama M, Kanazawa M, Usuki F, Nishizawa M, Shimohata T.

PLoS One. 2017 Jan 24;12(1):e0170623. doi: 10.1371/journal.pone.0170623. eCollection 2017.

15.

Methylmercury induces the expression of TNF-α selectively in the brain of mice.

Iwai-Shimada M, Takahashi T, Kim MS, Fujimura M, Ito H, Toyama T, Naganuma A, Hwang GW.

Sci Rep. 2016 Dec 2;6:38294. doi: 10.1038/srep38294.

16.

Prenatal low-dose methylmercury exposure impairs neurite outgrowth and synaptic protein expression and suppresses TrkA pathway activity and eEF1A1 expression in the rat cerebellum.

Fujimura M, Usuki F, Cheng J, Zhao W.

Toxicol Appl Pharmacol. 2016 May 1;298:1-8. doi: 10.1016/j.taap.2016.03.002. Epub 2016 Mar 7.

PMID:
26965727
17.

Assessing pre/post-weaning neurobehavioral development for perinatal exposure to low doses of methylmercury.

Cheng J, Fujimura M, Bo D.

J Environ Sci (China). 2015 Dec;38:36-41. doi: 10.1016/j.jes.2015.05.027. Epub 2015 Aug 21.

PMID:
26702966
18.

Effect of in utero exposure to endocrine disruptors on fetal steroidogenesis governed by the pituitary-gonad axis: a study in rats using different ways of administration.

Kariyazono Y, Taura J, Hattori Y, Ishii Y, Narimatsu S, Fujimura M, Takeda T, Yamada H.

J Toxicol Sci. 2015 Dec;40(6):909-16. doi: 10.2131/jts.40.909.

19.
20.

Decreased plasma thiol antioxidant barrier and selenoproteins as potential biomarkers for ongoing methylmercury intoxication and an individual protective capacity.

Usuki F, Fujimura M.

Arch Toxicol. 2016 Apr;90(4):917-26. doi: 10.1007/s00204-015-1528-3. Epub 2015 May 16.

PMID:
25975991

Supplemental Content

Loading ...
Support Center