Format

Send to

Choose Destination
Micromachines (Basel). 2019 Jun 17;10(6). pii: E402. doi: 10.3390/mi10060402.

Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications.

Author information

1
CIEMAT, División de Energías Renovables, Avda. Complutense 40, 28040 Madrid, Spain. susanamaria.fernandez@ciemat.es.
2
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. alberto.bosca@upm.es.
3
Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. alberto.bosca@upm.es.
4
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. j.pedros@upm.es.
5
Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. j.pedros@upm.es.
6
Das-Nano, Polígono Industrial Talluntxe, Calle M-10, Tajonar, 31192 Navarra, Spain. aines@das-nano.com.
7
Das-Nano, Polígono Industrial Talluntxe, Calle M-10, Tajonar, 31192 Navarra, Spain. mfernandez@das-nano.com.
8
Das-Nano, Polígono Industrial Talluntxe, Calle M-10, Tajonar, 31192 Navarra, Spain. iarnedo@das-nano.com.
9
Departamento Ingeniería Eléctrica, Electrónica y de Comunicación, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain. iarnedo@das-nano.com.
10
CIEMAT, División de Energías Renovables, Avda. Complutense 40, 28040 Madrid, Spain. JosePablo.Gonzalez@ciemat.es.
11
CIEMAT, División de Energías Renovables, Avda. Complutense 40, 28040 Madrid, Spain. marina.cruz@ciemat.es.
12
CIEMAT, Departamento de Electrónica, Avda. Complutense 40, 28040 Madrid, Spain. dasago93@gmail.com.
13
CIEMAT, Departamento de Electrónica, Avda. Complutense 40, 28040 Madrid, Spain. antonio.molinero@ciemat.es.
14
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. rajveer.fandan@upm.es.
15
Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. rajveer.fandan@upm.es.
16
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. m.pampillon@upm.es.
17
Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. m.pampillon@upm.es.
18
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. fernando.calle@upm.es.
19
Departamento de Ingeniería Electrónica, E.T.S.I de Telecomunicación, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. fernando.calle@upm.es.
20
CIEMAT, División de Energías Renovables, Avda. Complutense 40, 28040 Madrid, Spain. jj.gandia@ciemat.es.
21
CIEMAT, División de Energías Renovables, Avda. Complutense 40, 28040 Madrid, Spain. julio.carabe@ciemat.es.
22
Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain. javier.martinez@upm.es.
23
Departamento de Ciencia de Materiales, E.T.S.I de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/ Profesor Aranguren s/n, 28040 Madrid, Spain. javier.martinez@upm.es.

Abstract

New architectures of transparent conductive electrodes (TCEs) incorporating graphene monolayers in different configurations have been explored with the aim to improve the performance of silicon-heterojunction (SHJ) cell front transparent contacts. In SHJ technology, front electrodes play an important additional role as anti-reflectance (AR) coatings. In this work, different transparent-conductive-oxide (TCO) thin films have been combined with graphene monolayers in different configurations, yielding advanced transparent electrodes specifically designed to minimize surface reflection over a wide range of wavelengths and angles of incidence and to improve electrical performance. A preliminary analysis reveals a strong dependence of the optoelectronic properties of the TCEs on (i) the order in which the different thin films are deposited or the graphene is transferred and (ii) the specific TCO material used. The results shows a clear electrical improvement when three graphene monolayers are placed on top on 80-nm-thick ITO thin film. This optimum TCE presents sheet resistances as low as 55 Ω/sq and an average conductance as high as 13.12 mS. In addition, the spectral reflectance of this TCE also shows an important reduction in its weighted reflectance value of 2-3%. Hence, the work undergone so far clearly suggests the possibility to noticeably improve transparent electrodes with this approach and therefore to further enhance silicon-heterojunction cell performance. These results achieved so far clearly open the possibility to noticeably improve TCEs and therefore to further enhance SHJ contact-technology performance.

KEYWORDS:

graphene; silicon heterojunction solar devices; transparent electrodes

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center