Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia.

Torres TE, Lima E Jr, Calatayud MP, Sanz B, Ibarra A, Fernández-Pacheco R, Mayoral A, Marquina C, Ibarra MR, Goya GF.

Sci Rep. 2019 Mar 8;9(1):3992. doi: 10.1038/s41598-019-40341-y.

2.

Cell damage produced by magnetic fluid hyperthermia on microglial BV2 cells.

Calatayud MP, Soler E, Torres TE, Campos-Gonzalez E, Junquera C, Ibarra MR, Goya GF.

Sci Rep. 2017 Aug 17;7(1):8627. doi: 10.1038/s41598-017-09059-7.

3.

Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration.

Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, Battistini P, Castagna M, Dente L, Parchi P, Lisanti M, Cavallini G, Junquera C, Goya GF, Raffa V.

Adv Healthc Mater. 2017 Apr;6(7). doi: 10.1002/adhm.201601429. Epub 2017 Feb 3.

PMID:
28156059
4.

In Silico before In Vivo: how to Predict the Heating Efficiency of Magnetic Nanoparticles within the Intracellular Space.

Sanz B, Calatayud MP, De Biasi E, Lima E Jr, Mansilla MV, Zysler RD, Ibarra MR, Goya GF.

Sci Rep. 2016 Dec 7;6:38733. doi: 10.1038/srep38733.

5.

Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.

Sanz B, Calatayud MP, Torres TE, Fanarraga ML, Ibarra MR, Goya GF.

Biomaterials. 2017 Jan;114:62-70. doi: 10.1016/j.biomaterials.2016.11.008. Epub 2016 Nov 9.

PMID:
27846403
6.

Evaluation of In-Situ Magnetic Signals from Iron Oxide Nanoparticle-Labeled PC12 Cells by Atomic Force Microscopy.

Wang L, Min Y, Wang Z, Riggio C, Calatayud MP, Pinkernelle J, Raffa V, Goya GF, Keilhoff G, Cuschieri A.

J Biomed Nanotechnol. 2015 Mar;11(3):457-68.

PMID:
26307828
7.

The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake.

Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF.

Biomaterials. 2014 Aug;35(24):6389-99. doi: 10.1016/j.biomaterials.2014.04.009. Epub 2014 May 9.

PMID:
24816288
8.

Magnetic nanoparticles as intraocular drug delivery system to target retinal pigmented epithelium (RPE).

Giannaccini M, Giannini M, Calatayud MP, Goya GF, Cuschieri A, Dente L, Raffa V.

Int J Mol Sci. 2014 Jan 22;15(1):1590-605. doi: 10.3390/ijms15011590.

9.

The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field.

Riggio C, Calatayud MP, Giannaccini M, Sanz B, Torres TE, Fernández-Pacheco R, Ripoli A, Ibarra MR, Dente L, Cuschieri A, Goya GF, Raffa V.

Nanomedicine. 2014 Oct;10(7):1549-58. doi: 10.1016/j.nano.2013.12.008. Epub 2014 Jan 7.

PMID:
24407149
10.

Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles.

Pinheiro PC, Daniel-da-Silva AL, Tavares DS, Calatayud MP, Goya GF, Trindade T.

Materials (Basel). 2013 Jul 31;6(8):3213-3225. doi: 10.3390/ma6083213.

11.

Magnetically-driven selective synthesis of Au clusters on Fe3O4 nanoparticles.

Sebastian V, Calatayud MP, Goya GF, Santamaria J.

Chem Commun (Camb). 2013 Jan 25;49(7):716-8. doi: 10.1039/c2cc37355f.

PMID:
23223273
12.

Magnetic field-assisted gene delivery: achievements and therapeutic potential.

Schwerdt JI, Goya GF, Calatayud MP, Hereñú CB, Reggiani PC, Goya RG.

Curr Gene Ther. 2012 Apr 1;12(2):116-26. Review.

PMID:
22348552

Supplemental Content

Loading ...
Support Center