Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 22

1.

Dissipative surface solitons in a nonlinear fractional Schrödinger equation.

Huang C, Dong L.

Opt Lett. 2019 Nov 15;44(22):5438-5441. doi: 10.1364/OL.44.005438.

PMID:
31730077
2.

Nonlocal solitons in fractional dimensions.

Dong L, Huang C, Qi W.

Opt Lett. 2019 Oct 15;44(20):4917-4920. doi: 10.1364/OL.44.004917.

PMID:
31613228
3.

Simultaneous measurement of liquid surface tension and contact angle by light reflection.

Luo D, Qian L, Dong L, Shao P, Yue Z, Wang J, Shi B, Wu S, Qin Y.

Opt Express. 2019 Jun 10;27(12):16703-16712. doi: 10.1364/OE.27.016703.

PMID:
31252892
4.

Localization and Anderson delocalization of light in fractional dimensions with a quasi-periodic lattice.

Huang C, Shang C, Li J, Dong L, Ye F.

Opt Express. 2019 Mar 4;27(5):6259-6267. doi: 10.1364/OE.27.006259.

PMID:
30876214
5.

Composition Relation between Nonlinear Bloch Waves and Gap Solitons in Periodic Fractional Systems.

Dong L, Huang C.

Materials (Basel). 2018 Jul 4;11(7). pii: E1134. doi: 10.3390/ma11071134.

6.

Double-hump solitons in fractional dimensions with a đť’«đť’Ż-symmetric potential.

Dong L, Huang C.

Opt Express. 2018 Apr 16;26(8):10509-10518. doi: 10.1364/OE.26.010509.

PMID:
29715986
7.

Surface gap solitons in a nonlinear fractional Schrödinger equation.

Xiao J, Tian Z, Huang C, Dong L.

Opt Express. 2018 Feb 5;26(3):2650-2658. doi: 10.1364/OE.26.002650.

PMID:
29401802
8.
9.

Beam propagation management in a fractional Schrödinger equation.

Huang C, Dong L.

Sci Rep. 2017 Jul 14;7(1):5442. doi: 10.1038/s41598-017-05926-5.

10.

Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice.

Huang C, Dong L.

Opt Lett. 2016 Dec 15;41(24):5636-5639. doi: 10.1364/OL.41.005636.

PMID:
27973477
11.

Stable vortex solitons in a ring-shaped partially-PT-symmetric potential.

Huang C, Dong L.

Opt Lett. 2016 Nov 15;41(22):5194-5197. doi: 10.1364/OL.41.005194.

PMID:
27842091
12.

2D in-band solitons in PT-symmetric waveguide arrays.

Guo D, Xiao J, Li H, Dong L.

Opt Lett. 2016 Oct 1;41(19):4457-4460. doi: 10.1364/OL.41.004457.

PMID:
27749854
13.

Propagation characteristics of continuously tuning distorted Airy-like beams.

Qian Y, Dong L.

Appl Opt. 2015 Dec 10;54(35):10487-93. doi: 10.1364/AO.54.010487.

PMID:
26836875
14.

Diffraction management and soliton dynamics in frequency-chirped â„™T symmetric lattices.

Gu L, Guo D, Dong L.

Opt Express. 2015 May 4;23(9):12434-43. doi: 10.1364/OE.23.012434.

PMID:
25969329
15.

Stabilization of multipole-mode solitons in mixed linear-nonlinear lattices with a PT symmetry.

Huang C, Li C, Dong L.

Opt Express. 2013 Feb 11;21(3):3917-25. doi: 10.1364/OE.21.003917.

PMID:
23481848
16.

Generation of optical accelerating regular triple-cusp beams and their topological structures.

Ren Z, Dong L, Ying C, Fan C.

Opt Express. 2012 Dec 31;20(28):29276-83. doi: 10.1364/OE.20.029276.

PMID:
23388753
17.

Multipeaked gap solitons in PT-symmetric optical lattices.

Li C, Huang C, Liu H, Dong L.

Opt Lett. 2012 Nov 1;37(21):4543-5. doi: 10.1364/OL.37.004543.

PMID:
23114357
18.

Symmetric and antisymmetric solitons in finite lattices.

Zhong S, Huang C, Li C, Dong L.

Opt Express. 2011 Aug 29;19(18):17179-88. doi: 10.1364/OE.19.017179.

PMID:
21935081
19.
20.

Broken ring solitons in Bessel optical lattices.

Dong L, Wang J, Wang H, Yin G.

Opt Lett. 2008 Dec 15;33(24):2989-91.

PMID:
19079516

Supplemental Content

Loading ...
Support Center