Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Copper and ocean acidification interact to lower maternal investment, but have little effect on adult physiology of the Sydney rock oyster Saccostrea glomerata.

Scanes E, Parker LM, O'Connor WA, Gibbs MC, Ross PM.

Aquat Toxicol. 2018 Oct;203:51-60. doi: 10.1016/j.aquatox.2018.07.020. Epub 2018 Jul 30.

PMID:
30077126
2.

Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata.

Parker LM, O'Connor WA, Byrne M, Dove M, Coleman RA, Pörtner HO, Scanes E, Virtue P, Gibbs M, Ross PM.

Proc Biol Sci. 2018 Feb 14;285(1872). pii: 20172869. doi: 10.1098/rspb.2017.2869.

3.

Sensitivity to ocean acidification differs between populations of the Sydney rock oyster: Role of filtration and ion-regulatory capacities.

Stapp LS, Parker LM, O'Connor WA, Bock C, Ross PM, Pörtner HO, Lannig G.

Mar Environ Res. 2018 Apr;135:103-113. doi: 10.1016/j.marenvres.2017.12.017. Epub 2017 Dec 18.

PMID:
29428529
4.

Transcriptomic profiling of adaptive responses to ocean acidification.

Goncalves P, Jones DB, Thompson EL, Parker LM, Ross PM, Raftos DA.

Mol Ecol. 2017 Nov;26(21):5974-5988. doi: 10.1111/mec.14333. Epub 2017 Sep 29.

PMID:
28833825
5.

Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata.

Parker LM, Scanes E, O'Connor WA, Coleman RA, Byrne M, Pörtner HO, Ross PM.

Mar Pollut Bull. 2017 Sep 15;122(1-2):263-271. doi: 10.1016/j.marpolbul.2017.06.052. Epub 2017 Jul 19.

PMID:
28733041
6.

Intertidal oysters reach their physiological limit in a future high-CO2 world.

Scanes E, Parker LM, O'Connor WA, Stapp LS, Ross PM.

J Exp Biol. 2017 Mar 1;220(Pt 5):765-774. doi: 10.1242/jeb.151365.

7.

Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors.

Parker LM, O'Connor WA, Byrne M, Coleman RA, Virtue P, Dove M, Gibbs M, Spohr L, Scanes E, Ross PM.

Biol Lett. 2017 Feb;13(2). pii: 20160798. doi: 10.1098/rsbl.2016.0798. Epub 2017 Feb 15.

8.

Rapid transcriptional acclimation following transgenerational exposure of oysters to ocean acidification.

Goncalves P, Anderson K, Thompson EL, Melwani A, Parker LM, Ross PM, Raftos DA.

Mol Ecol. 2016 Oct;25(19):4836-49. doi: 10.1111/mec.13808. Epub 2016 Sep 12.

PMID:
27543886
9.

Persistence of Positive Carryover Effects in the Oyster, Saccostrea glomerata, following Transgenerational Exposure to Ocean Acidification.

Parker LM, O'Connor WA, Raftos DA, Pörtner HO, Ross PM.

PLoS One. 2015 Jul 6;10(7):e0132276. doi: 10.1371/journal.pone.0132276. eCollection 2015.

10.

Populations of Pacific oysters Crassostrea gigas respond variably to elevated CO2 and predation by Morula marginalba.

Wright JM, Parker LM, O'Connor WA, Williams M, Kube P, Ross PM.

Biol Bull. 2014 Jun;226(3):269-81.

PMID:
25070870
11.

Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819).

Scanes E, Parker LM, O'Connor WA, Ross PM.

PLoS One. 2014 Apr 14;9(4):e93649. doi: 10.1371/journal.pone.0093649. eCollection 2014.

12.

Predicting the response of molluscs to the impact of ocean acidification.

Parker LM, Ross PM, O'Connor WA, Pörtner HO, Scanes E, Wright JM.

Biology (Basel). 2013 Apr 2;2(2):651-92. doi: 10.3390/biology2020651.

Supplemental Content

Loading ...
Support Center