Format

Send to

Choose Destination
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109938. doi: 10.1016/j.msec.2019.109938. Epub 2019 Jul 4.

Surfaces based on amino acid functionalized polyelectrolyte films towards active surfaces for enzyme immobilization.

Author information

1
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile; Centro de Química Médica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Las Condes 12438 Lo Barnechea, Santiago 7710162, Chile.
2
Universidad Autónoma de Chile, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, El Llano Subercaseaux 2801, San Miguel, Chile des 12438 Lo Barnechea, Santiago 7710162, Chile.
3
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Univ Lyon, ICBMS, UMR 5246 CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, 1 rue Victor grignard, Bâtiment Lederer, Université Claude Bernard, 69622 Villeurbanne cedex, France.
4
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile.
5
Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
6
Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Soft Matter Research-Technology Center, SMAT-C, Av. B. O'Higgins 3363, Santiago, Chile.
7
Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile. Electronic address: ricabrer@uchile.cl.
8
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile. Electronic address: laura.tamayo@uchile.cl.
9
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago 7800003, Chile. Electronic address: maurzua@uchile.cl.

Abstract

Surface based on polyelectrolytes functionalized with amino acids onto amino-terminated solid surfaces of silicon wafers was prepared, with the purpose of evaluate the chemical functionality of the polyelectrolyte films in adsorption and catalytic activity of an enzyme. In this work, the adsorption of the enzyme glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides (LmG6PD) was studied as model. The polyelectrolytes were obtained from poly (maleic anhydride-alt-vinylpyrrolidone) [poly(MA-alt-VP)] and functionalized with amino acids of different hydropathy index: glutamine (Gln), tyrosine (Tyr) and methionine (Met). The polyelectrolytes were adsorbed onto the amino-terminated silicon wafer at pH 3.5 and 4.5 and at low and high ionic strength. At low ionic strength and pH 3.5, the largest quantity of adsorbed polyelectrolyte was on the films containing glutamine moiety as the most hydrophilic amino acid in the side chain of polymer chain (5.88 mg/m2), whereas at high ionic strength and pH 4.5, the lowest quantity was in films containing tyrosine moiety in the side chain (1.88 mg/m2). The films were characterized by ellipsometry, contact angle measurements and atomic force microscopy (AFM). The polyelectrolyte films showed a moderate degree of hydrophobicity, the methionine derivative being the most hydrophobic film. With the aim of evaluate the effect of the amino acid moieties on the ability of the surface to adsorb enzymes, we study the activity of the enzyme on these surfaces. We observed that the polarity of the side chain of the amino acid in the polyelectrolyte affected the quantity of LmG6PD adsorbed, as well as its specific activity, showing that films prepared from poly(MA-alt-VP) functionalized with Met provide the best enzymatic performance. The results obtained demonstrated that the surfaces prepared from polyelectrolytes functionalized with amino acids could be an attractive and simple platform for the immobilization of enzymes, which could be of interest for biocatalysis applications.

KEYWORDS:

Amino acid functionalization; Enzyme adsorption; Glucose 6-phosphate dehydrogenase; Polyelectrolytes; Surfaces

PMID:
31499948
DOI:
10.1016/j.msec.2019.109938

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center